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Matematikai szoftverek alkalmazasa a gyakorlati
torésmechanikaban

Using Mathematical Software in Practical Fracture
Mechanics

Kocsis I.

Debreceni Egyetem Miiszaki Kar, kocsisi@eng.unideb.hu

Abstract. The use of mathematical software in teaching and learning mathematics (in classrooms and
during preparation for tests and exams) has been intensively investigated by researchers of the teaching
methodology of mathematics since professional software (in our days free online calculators and mobile

applications, as well) are available for students. The role of mathematical software in engineering
education where the ability to apply mathematical knowledge has to have priority is especially interesting.

There are several points of view we can discuss this question from. In this paper a problem from the area

of fraction mechanics is presented that appears in everyday work of mechanical engineers responsible for
the condition monitoring of certain engineering structures eg. pressure vessels and tubes. (Fracture
mechanics is the field of mechanics concerned with the study of the propagation of cracks in materials.)

Calculation methods and functions related to typical situations (geometry of the structure, type and value
of the stress, shape, size and position of the crack) can be found in handbooks (and recently in online
databases), however the calculations are extremely complicated and cannot be carried out without
reliable mathematical software. Effective fraction analysis requires experience in use of mathematical
software (also in analytical not only in numerical calculations) this is why the curriculum of one of
mathematical or technical courses of the Mechanical EFngineering training programme has to contain this
topic.

Bevezetés

Ebben a dolgozatban egy specialis mérnoki teriileten felvet6dé problémakor szemszogébdl
mutatjuk be a matematikai szoftvereknek a mérnoki matematika oktatasaban betoltott szerepét.

Gondolatmenetiink illeszkedik ahhoz az elvhez, mely az oktatasi folyamat minden eleme esetén
az adott szak képzési céljdnak valo megfelelést és a hatékonysdgot hangsulyozza. A képzési
célnak valé megfelelés nem meriilhet ki abban, hogy a képzési program formalisan eleget tesz a
szak Képzési és képesitési kovetelményeinek, az egyes témakorok oktatdinak tisztaban kell
lennie azzal, hogy az altaluk atadott ismeretek mennyiben jarulnak hozza ahhoz, hogy a végzett
mérnokok kell6képpen fel legyenek késziilve a szakmai munkajukra. Véleményliink szerint ez a
természettudomanyi alapismeretek korébe tartozd targyak oktatdinak is kotelessége, ha nem
elégszenek meg azzal, hogy a targyaik az ,elkeriilhetetlen rossz” kategériaba sorolédjanak.
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A miszaki fels6oktatas lassan reagil az oktatasi rendszerben az utdébbi évtizedben
bekovetkezett jelentds valtozasokra: az oktatds eredményességének modszertani eszkozokkel
vald javitdsa nem jon szoba, marad a koriilményekre valé hivatkozas. Véleménytlink szerint a
mérnokképzés keretében folydé matematikaoktatdsban sziikségesek az oktatas-modszertani
megfontoldsok és Ujszeri modszerek alkalmazasa, melyek egyrészt figyelembe veszik a
fels6oktatasba keriil6 hallgatok felkésziiltségét és szemléletmddjat, valamint azt, hogy a
matematika oktatasa egy meghatarozott kimenet elérését célzé folyamat része.

A mérnoki szemléletmod és tevékenység egyik alapvetd fogalmanak, a hatékonysagnak a képzési
folyamat szervezésében is meghatarozonak kellene lennie. A teljes képzés hatékonysaga
altalanossagban a kés6bbi mérnoki munka sikerességében mérhetd, de a képzés részteriiletei
(kurzusok, targycsoportok, gyakorlati munka) hatékonysaga is vizsgalhaté az Aaltaluk
el6készitett tevékenységek sikerességén keresztiil. Ez a megkozelités hozzajarulhat az alapozé
targyak oktatasa kapcsan felvet6dd (féleg a motivaciés) problémak megoldasahoz.

A probléma alapu tanitas/tanulds mddszerei jelentdsen hozzajarulhatnak az eredményesség
noveléséhez azaltal, hogy a motivacié a hallgat6 altal valasztott szakteriilethez kotédik. A
probléma alapd tanitis a matematikat oktatd részérdl jelentds befektetést igényel, mivel a
problémak felvetése gyakran ismeretlen teriileten, fogalomrendszerben torténik, de a szerzd
tapasztalatai szerint a befektetés megtériil azaltal, hogy az 0j ismeretek birtokaban mas - az
adott szak hallgato6i szamara érdekesebb - szemléletben képes feldolgozni a tananyagot, és ezzel
novelni tudja a hallgatok egytittmikodési készségét.

Ebben a dolgozatban egy konkrét miiszaki oktatasi szitudcié tanulsdgai alapjan fogalmazunk
kovetkeztetéseket a matematika oktatasara vonatkozoan.

1. A szamolas ,kulturaja”

A matematikai szoftverek hasznalatdnak elemzésekor figyelembe kell venni a tanuldk viszonyat
a szamolast segitd eszkozokhoz, ami ma mar nem fiiggetlenithet6 a fiataloknak a hordozhat6
szamitogépekhez f(iz6d6 viszonyatdl. Lassan minden tanulé zsebében ott lesznek azok az ,,okos
telefonnak” nevezett eszkozok, melyekkel ,mindent meg lehet csindlni”. Ez alapvet&en
meghatarozza a fiatalok szemléletét, amit a tanulasi folyamatban nem lehet figyelmen kiviil
hagyni.

A matematika 6rdkon - a tanulas, a gyakorlas és persze mindenekel6tt a szamonkérések kapcsan
- a,Lehet-e haszndini ...” kezdetli kérdések a gyakran ismétl6d6 kérdések kozé tartoznak azoéta,
hogy rendelkezésre allnak a szadmolasokat leegyszeriisitd, megkonnyité eszkozok. A kérdés
tovabbi része attdl fiigg, hogy a kérdést az 1970-es, az 1980-as, az 1990-es, a 2000-es években
vagy napjainkban teszik fel: ..., tdbldzatot, logarlécet, egyszerii zsebszdmologépet, bonyolultabb
szdmitdsok (pl. fiiggvény Adbrdzoldsdra képes) zsebszidmologépet szdmitégépre telepitett
matematikai szoftvert, interneten elérheté matematikai szoftvert, ...?
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Miota széles korben elterjedtek a zsebszamolégépek kérdés, hogy azokat milyen médon célszert
felhasznalni a matematika tanitdsa soran, illetve a tanulék mikor és milyen feltételekkel
hasznéalhatjak a szamitasok elvégzésére.

Az alapmiiveletek végrehajtasara képes egyszerii szamologépek és a fiiggvénytablazatok
koraban még viszonylag konnyen lehetett kezelni a kérdést, mivel az eszko6zok funkcidja jol
elkiiloniilt. Amikor azonban a nagyobb tudasu zsebszamologépek atvették a fliggvénytablazatok
szerepét is, a kozépiskolakban mar nehezebb volt elhatarolni, hogy mit ,szabad” és mit ,nem
szabad” szadmolégéppel szamolni, hiszen a legtobb szdmoldsban vannak szamoldgép nélkdil is
elvégezhet6 (és célszerlien elvégzendd) szdmolasi 1épések és olyanok is, melyeket csak
szamoldgéppel lehet megkapni (pl. fliggvényértékek meghatarozasa). Ma a didkok jelentds része
- elébb-utébb a tobbsége - szamolégépként olyan eszkozoket hasznal, melyek valdjaban a
szamitasok jelent8s részét - és akar teljes feladatmegoldasokat (pl. fiiggvényelemzést) is -
automatikusan elvégezni képes matematikai szoftverekkel ellatott szamitégépek. Igy a ,mit
szabad és mit nem szabad szamologéppel szamolni” kérdés megvalaszoldsa még bonyolultabb.

A mobil szamitégépekkel egylitt felnové generadciok szamdra nehezen érthetd, hogy adott
esetben miért nem hasznalhatnak egy eszkozt. A tapasztalatok szerint egyre kevésbé sikertil a
kozépiskolakban elérni, hogy a szamoldgép nélkiil végezhetd 1épéseket fejben vagy irasban
végezzék a tanulék, bArmennyire is kivanatos lenne ez a tanulas eredményessége érdekében. A
miiszaki fels§oktatasba felvételt nyert hallgaték jelentds része szamologép nélkiil szinte semmit
sem tud kiszamitani. J6 példa erre az a hallgaté, aki a V8 értékérdl ugy nyilatkozott, hogy azt
csak szamologéppel tudja kiszamitani, és nem tudja, hogy a V' mit jelent; szamara a /8
kiszamitasa ugyaniagy két gomb megnyomasat jelenti, mint barmilyen egyéb fiiggvényértéké. A
szakértd szemlélé szdmara vilagos, hogy ez az ért6 tudas alacsony szintjének koszonhetd, a
didkok viszont ugy gondolkodnak errdl, hogy ,a lényeg az, hogy az eredmény kijojjon”. Sok didk
szamara a szamologép megnyugtato, és frusztraltnak érzi magat enélkiil.

A fentiekhez hasonlo kérdések vetddnek fel a fels6bb matematika oktatasaban a matematikai
szoftverek alkalmazasa kapcsan. Ennek a problémakornek is jelentés irodalma van, melyben
részben a ,haszndaljuk-e”, részben a ,hogyan tudjuk hatékonyan hasznalni” kérdésekre keresik a

valaszokat.

Ebben a dolgozatban nem lehet célunk a széleskorli modszertani attekintés, csupan annak
felvetése, hogy a matematikai szoftverek szerepérdl alkotott elképzelést tobb, részben
ellentmondé tényez6 befolyasolja.

Az elméleti ismeretek elsajatitasat tAmogatd gyakorlas soran nem célszerd a szoftverhasznalat,
mert a szamolasi 1épések szerepének megértése a tanulas része, maga a szamolas a tanulas, nem
csak az a lényeg, hogy j6jjon ki az eredmény. A matematika targy 6raszamait ismerve ennek az
elvnek az alkalmazasa gyakorlatilag azt jelenti, hogy a szoftverek tanitdsara nem jut idé.

A miiszaki példdk megoldasa soran (a fent emlitett id6beli korlat miatt a miiszaki targyak
keretében) viszont kifejezetten hasznos a szoftverek bevonasa, hogy a szamolastechnikai
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nehézségek ne akadalyozzak a miiszaki problémak megoldasanak folyamatat. Persze felvet6dik
a kérdés, hogy el6zmények, felkészités nélkiil a szoftverhasznalat mennyire lehet eredményes.

A matematikai ismeretek hasznosuldsa is sokféle. A matematika fogalomrendszerének,
Osszefiiggéseinek és moddszereinek ismerete sziikséges a miiszaki tudomanyok tanulasahoz.
Ebben a vonatkozdsban a matematikai elméleti ismeretek ért6 birtokldsa a meghatarozo, a
szamolastechnikai felkésziiltség jelent6se kisebb, a miliszaki targyak tanulasa soran ritkan fordul
eld, hogy a szamolasok végrehajtasa komoly technikai felkésziiltséget igényelne.

A szamitogépek fejlédésével jelentésen megvaltozott a miszaki elmélet és a gyakorlat
kapcsolata. Mig a megfelel6 szamitasi kapacitas hianyaban az elméleti eredmények kozvetlen
gyakorlati alkalmazdsara nem volt lehetdség, és igy a mérnokok végeredményben tapasztalati
alapon oldottak meg problémakat, addig ma mar a mérnoki szamitasokra kifejlesztett szoftverek
képesek a pontos szamitasok elvégzésére rovid id6 alatt. A szerkezetek tervezésekor példaul a
végeselemes szoftverek alkalmazasaval elkeriilhetd a rendkiviil koltséges tilméretezés, amit
kordbban a ,biztonsdg kedvéért” meg kellett tenni. A gyakorlati felhaszndlé szdmara ezek az
alkalmazasok fekete dobozként miikodnek abban az értelemben, hogy nem sziikséges tisztaban
lenni a szamolas részleteivel, ,csak” helyesen kell megadni a bemend adatokat, és helyesen kell
értékelni az eredményt.

Vannak azonban olyan problémakoérok is, melyek bonyolult analitikus szamitasok végrehajtasat
igénylik a mindennapi mérnoki munkaban. Az itt bemutatasra keriilé6 példa a térésmechanika
témakorbdl szarmazik, ami tipikus esete annak, hogy a bonyolult analitikus szamitasokra képes
matematikai szoftverek elérhet6sége alapvetden valtoztatta meg a gyakorlati munkat. Korabban
a szakemberek hidba ismerték a mechanikai modellekbdl levezetett formuldkat, az azokkal vald
szamolas reménytelen volt, nem is torédtek vele. A nagyteljesitmény(i szamitégépekkel egyiitt
felnové generaciék azonban masképpen allnak a kérdéshez, hiszen megszokjak, hogy mindenre
van szoftver, igy szdmukra teljesen mast jelent az, hogy mi a ,,nehéz”.

Az ilyen fajta alkalmazasi igény azt koveteli, hogy a matematikai szoftverek hasznalatara fel kell
késziteni a mérnokhallgatékat a képzés soran. Bar a szakmai ismeretekben val6 igazi elmélytilés
a mérnoki munka sordn torténik meg, a matematikai eszk6zok hasznalhatdsagara valo
raeszmélésnek ekkor mar kevés az esélye.

2. Torésmechanikai szamitasok

A mérnoki szerkezetek biztonsdganak (,teherbirdsanak”) megitélése szempontjabol fontos
szerepe van az anyagban jelenlévé repedéseknek. A repedések terjedésével foglalkozd
torésmechanika els6 nagy fejl6dési id6szaka a repedés-diagnosztikai médszerek elterjedéséhez
kothetd. Replil6gép-szerkezetek, hajoszerkezetek, egyéb ismétl6d6 terhelésnek kitett szerkezeti
elemek, jaArmialkatrészek tonkremenetelét vizsgalva deriilt fény az un. ridegtorés jelenségre.
Nagyméretii acélszerkezetek (hidak, hajdk, tartalyok) rideg torése sok sulyos katasztrofa kivalto
oka volt f6leg a huszadik szazad masodik harmadaban. A jelenség lényege, hogy a szerkezeti
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elem gyakorlatilag atmenet nélkiil eltérik el, mert az anyagdban minden esetben jelenlévd
kezdeti repedések - a kortilményektdl fiiggé minimalis mértéki - ismétl6dd terhelés hatdsara
lassan, észrevétleniil novekednek a kritikus repedéshossz eléréséig, aztan a repedéshossz
novekedése felgyorsul, és akar masodpercek alatt bekovetkezik a szerkezet torése. A befagyott
vizfellileten kialakul6 rianas is hasonléan megy végbe.

A torésmechanika fejlédése akkor gyorsult fel Gjra, amikor a szamitégépek szamolasi kapacitasa
lehet6vé tette a mechanikai modellekben felirt bonyolult egyenletek megoldasat, példaul a
végeselem-mddszer alkalmazasat. A gyakorlatban el6forduld szerkezetekre, repedéstipusokra
meghataroztak a fesziiltséget a repedéscsiucs kozelében leird fesziiltségintenzitasi tényezét,
valamint az anyagra jellemz6 torési szivdssagot (lasd pl. [1-4]), melyek ismeretében szamolhatd,
hogy adott terhelés esetén mekkora a kritikus repedéshossz (a stabil és az instabil
repedésterjedés hatara), igy a szerkezet adott allapota biztonsagi szempontb6l mindsithetd
annak alapjan, hogy az adott a repedéshosszhoz tartozo6 K fesziiltségintenzitasi tényez6 hogyan
viszonyul a torési szivossaghoz (K;.). Ennek attekintéséhez a K —a fiiggvény abrazolasa
sziikséges.

A feszliltségintenzitasi tényez6 érzékenysége a repedéshossz valtozasara szintén fontos jellemzd
[5], mivel a repedéshossz valtozasa, illetve a leolvasas hibaja ennek fliggvényében befolyasolja a
biztonsagi tényez6 (a K és a K;. értékek viszonyanak) értékét. A kvazistatikus
repedésérzékenységi index értékét adott repedéshossz esetén a K — a fliggvény derivaltja adja.

A torési szivdssag és az ehhez tartozo6 kritikus repedéshossz statikus terhelés esetén jellemzi a
szerkezetet. Mivel a repedés hossza kisebb terhelés esetén is novekszik (stabilan mert a repedés
feliiletének novekedése, valamint a repedéscsucs kozelében kialakulé képlékeny alakvaltozas
felemészti az energiat), a gyakorlat szempontjabdl fontos kérdés, hogy adott szerkezet adott
repedése ciklikus terhelés mellett mikor (hany terhelési ciklus utdn) éri el kritikus
repedéshosszat, mert a megengedett lizemeltetési id6 ez alapjan hatarozhaté meg [5-7]. A
néhany nap, de tobb év is. Ez adja a pontos szamitas jelentéségét: ha a repedés veszélyes, akkor a
gyors beavatkozdassal sulyos karokat lehet megel6zni, ha viszont nem az, akkor a tovabb
lizemeltetéssel lehet a folosleges veszteségeket elkeriilni. A ciklusokban kifejezett élettartam a
K — a figgvényt is tartalmaz6 fliggvény integralasaval szamithat6. A 3. részben bemutatunk egy
szamolast, amit huzo-liikteto terhelés esetén kell alkalmazni.

3. A teljes falvastagsagot elérd repedés belsé nyomassal és
hajlitassal terhelt cs6 falaban

A gyakorlati mérnoki szamitasok jellegét egy bels6 nyomassal és hajlitassal terhelt csé
(jellemzben valamilyen folyadékot vagy gazt szallité vezeték része) példajan mutatjuk be,
melynek falaban a teljes falvastagsagot eléré repedés van az 1. abranak megfelel6en. Az
lizemeltetés soran feltart repedés esetén donteni kell arrdl, hogy a repedés mennyire veszélyes,
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a repedés hossza mennyire van koézel a kritikus repedéshosszhoz, melynél az instabil
repedésterjedés elindul. A geometriai és a terhelési adatok ismertek, a torési szivossag pedig
anyagjellemzé.

Geometriai paraméterek:
Ry = 350mm, t = 8mm
Terhelések:

belsé nyomas p = 64bar,

hajlito fesziiltség o, = 20MPa
Torési szivossag:
K, = 75MPa\m 1

1. dbra. A szerkezet geometridja és a repedés elhelyezkedése.

A fesziiltség-intenzitasi tényez6t leiré formula az adott geometridhoz, repedés jelleghez és
elhelyezkedéshez kézikonyvekbdl (példaul [1-4]), Gjabban pedig online adatbazisokbol
kereshetd ki. A vizsgalt probléma esetén ez a fiiggvény [1]: K (a) = (Fyo,, + F,0p) - Vma, ahol

_ p _4a
Om = R\’ a—RO
() -1
R; o
§=—
§=023 27
LN I .53
Ro=R,+% B=1+7c62-00293"5

1 t U= V2
S S— /_ 1 V2
4/12.(1_52) Ry tg (7‘[—0{)+th¥

V2
1_0»’ F 1+,u( + a 1>sina’
— —_— a [— .
Fro=1+u- tga 1 4 tg?a tga) «a
2a

2 2

" o N AV
10=<\/§-(F,§0—1)+n-%>-7 h <‘/§ (Fé - 1) +m 5) T

I
/10 F, = /_1
Fo= |5— !
0 oma 2ma

A megadott formuldkbol képzett 0sszetett K — a fliggvénnyel kell a szamitasokat elvégezni. Az
els6dleges feladat a kritikus repedéshossz kiszamitasa, és ennek oOsszevetése feltart repedés
hosszaval. Ez a K(a) = K;. egyenlet megoldasat jelenti (fsolve(K=Klc,a) ). A vizsgalt
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esetben a megoldas: ay itikus = 19.31mm. Az értékek attekintéséhez nagy segitséget jelent a K
fliggvény grafikonja (plot(K,a=0..a 1)) (2. abra).

Mivel a torési szivossagot kisérleti uton allapitjAk meg, a hasznalt érték a tényleges érték
becslése. Ezért az aktudlis repedéshossz megitélésékor célszerii figyelembe venni a torési
szivossagra rendelkezésre all6 érték bizonytalansagat példaul dgy, hogy meghatarozzuk a
kritikus repedéshosszat a 0.9 - K. és 1.1- K. torési szivossag értékek mellett. A példankban
ezek agq9 = 15.84mm, a; 1 = 22.99mm. A kapott eredmények gy fogalmazhaték meg, hogy a
torési szivéssag értékének ,+10%-o0s” bizonytalansagat feltételezve a kritikus repedéshossz

értéke a 15.84mm — 22.99mm tartomanyban van (2. abra).
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Aritikus
2. dbra. Fesziiltségintenzitdsi tényezd - repedéshossz fiiggvény (K-a)

dK
de *]

e e o
5 10 15 20 25 a[mrn]

3. dbra. Repedésérzékenységi index (a K-a fiiggvény derivaltja)

Az allapot megitélésének alapja a repedés hosszanak mérése. A mérés pontossaga fiigg a mérés
koriilményeitdl, az emberi tényezoktdl és a mérbdeszkoz pontossagatol. Az, hogy a vizsgalat soran
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milyen mérési pontossagot kell biztositani, a kvazistatikus repedésérzékenységi indextdl fligg
[5-7], ami a K — a fiiggvény differencidlhanyadosa (,meredeksége”). Ha a repedésérzékenységi
index értéke nagy, akkor kis mérési pontatlansag is jelent6sen befolyasolja a fesziilségintenzitasi
tényez6 szamitott értékét, igy a megdallapitds megbizhatésaga jelent6sen csokken, mig kis
repedésérzékenységi index érték esetén a mérési pontossagnak kisebb a jelentésége. A -
repedéshossztol fiiggd - repedésérzékenységi indexet a dK/da derivalt fiiggvény adja
(dK:=diff(K,a); plot(dK,a=1..a 1)) (3. abra).

A szerkezetek terhelése altalaban nem statikus, példaul egy olaj- vagy gazvezeték esetén az
lizemi nyomdas valtozik a szallitott mennyiség (tdmegaram) filiggvényében. A repedések
viselkedése a dinamikus (ciklikus) terhelés esetén kiilonbozik a kvazistatikus esettl. Mig a
kvazistatikus esetben azt feltételezziik, hogy a repedés csak akkor ,indul el”, ha fennall a K >
K., és akkor rogton instabil mdédon terjed, addig a ciklikus terhelésnél (egy bizonyos K érték,
illetve az ennek megfeleld a;;, repedéshossz felett) minden egyes ciklusban torténik kis mértékd,
stabil repedésterjedés. Ez a folyamat addig tart, mig a repedéshossz el nem éri a kritikus értéket,
amikor elindul az instabil repedésterjedés.. A szerkezet ciklikus terhelés esetén a - ciklusszaban

kifejezett - maradék élettartammal jellemezhet6 (Ng). Liiktett6-htz6 terhelés esetén
Akritikus
NR =

Aath

1
O

ahol C és n anyagtdl és geometriatol fiiggo jellemzok.

A 4. 4bra a szamitott maradék élettartamokat  (NI[i]:=int(1/(C*K"n),
a=afi]..a  kitks ))  mutatja  logaritmikus  skalan  (plot(Vector([a[1],...]),
Vector([IgN[1],...]) )-

NN, [ »
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4. abra. A ciklusszamban kifejezett élettartam (Ny ) logaritmusa a repedéshossz (a) fiiggvényében

3. Kovetkeztetések
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A matematikai szoftvereknek bevonasanak moédjat a mérnokképzésbe szamos tényezd
befolyasolja. Mig matematikai mddszertani szempontb6l tobb érvet fel lehet hozni arra, hogy a
szoftverek bevondsa rossz hatdssal van a matematika elméletének elsajatitasara, és az értd
alkalmazasara, addig a gyakorlat megkdveteli a mérnokoktél, hogy a rendelkezésre allo
eszkozoket tudjak alkalmazni a problémak megoldasara a gyakorlatban.

A gépészmérnoki szak képzési programja nagyon korlatozott idékeretet biztosit a matematika
targy szamara, igy az egymasnak ellentmond6 igényeknek valé megfelelés nehéz.

A miiszaki fels6oktatdsban nem elterjedt az oktatas-modszertani kérdések felvetése, pedig az itt
bemutatotthoz hasonld problémak kezelése ezt igényelné.
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Differential equations in economics

[. MOLNAR, CS. KEZI

University of Debrecen, molnarildi.4 @freemail.hu
University of Debrecen, kezicsaba@science.unideb.hu

Abstract. Applications of differential equations are used in modeling motion and change in all areas of
science. The theory of differential equations has become an essential tool of economic analysis particularly
since computer has become commonly available. It would be difficult to comprehend the contemporary
literature of economics if one does not understand basic concepts (such as bifurcations and chaos) and
results of modem theory of differential equations.

Introduction

A differential equation expresses the rate of change of the current state as a function of the
current state. A simple illustration of this type of dependence is changes of the Gross Domestic
Product (GDP) over time. Consider state Y of the GDP of the economy. The rate of change of the
GDP is proportional to the current GDP Y(t) = g - Y(t), where t stands for time and Y (t) the
derivative of the function Y with respect to t. The growth rate of the GDPis Y/Y.

1. Classical growth model

Let Y (t) the production, I(t) the investment, C(t) the consumption. Then
DY) =C)+I(t) = C(t)=Y()—I(t)
2)Y(@)=a- I(t),(a>0)
NCH)=Y(E)—s-Y(),(0<s<1)
4 I(t) =s-Y(t).

From the formulas 2) and 4) we get that % Y(t) = s-Y(t) .This is a separable differential
equation, which explicit form is Y (¢t) = a-s - Y (¢t).
Solution. Let h(Y) = Y and g(t) = a - s. These functions fulfil the f%dY = [ a- s dt equation.
If we integrate side by side, we get that
InY=a-s-t+InC.
If we express ¥,
Y(&) =C-e*st (C>0).

The solution is the exponential function.
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If we have the Y(0)=Y, initial value problem, we get that
Y,=Y(0)=C-e°=C.
Let u = a - s the rate of growth. Then the solution of the initial value problem is

Y(t) - Yo " ea.s.t = YO " eﬂ.t.
2. A macroeconomics model

Let C(t), I(t) and Y (t) consumption, investment and national income. For every t>0 let
1) C)+I(t)=Y(t)
2) I(t) =k-C(t)
3) Ct)=a-Y(@)+b

where 0 < a < 1 and b, k are positive constants.

From the previously equations we get that

Y(t) = 1-a Y(t) - b
k-a k-a
which is a first ordered linear differential equation. If we derivate 3) equation, we get
Ct) =a-Y(b).
Substituting this formula to 2) equation, we get that
() =k-a-Y().

Substitute the previous formula and 3) to the first equation, we get

a-Yt)+b+k-a-Y(t)=Y(t)
thatis

k-a-Yt)=Y(t)—a-Y(t)—D.
Divided by k - a side by side, we get that

1_aY(t) b
k-a k-a

. 1 a b
YO = YO - YO — =

Let Y(0) =Y, and we solve the initial value problem. In first step we solve the homogenous
equation

. 1-a
Y(t) = nY(t)

This is a separable differential equation thus

fldy—fl_adt
Y ") k-a
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Calculate the integrals, we get
1-a
InY =——-t+InC.
k-a
That is the solution of the homogenous equation is

1-a,
Yu(t) =eka -C (C>0).
In second step we calculate a particular solution of the inhomogeneous equation. To this let

1-a
Yp(t) = e®a £ - C(t). differentiating with respect to ‘t’, we get that
. 1__a.t 1 —a 1__a.t .
Yp(t) = eka g C(t) +eka-C(t).

Substitute Y, to the inhomogenous equation:

et LT o) et Gt = L% et () — ——
k-a k-a k-a
thatis
. b a-1,
C(t)=—k_ - eka
Integrate side by side
e?c-;al't b a1, k-a b a-1,
C(t)Z_k- a a—1 Tk a.ek.a .a—1=1—a'eka
k-a
Applying this formula
1-a b a-1 b
Yp(t)zeﬁ.t'l_a eﬁ.t:l—a

The general solution of the differential equation is

1-a
Y(t) =Yy (®) +Yp(t) =C-eFat + -

— a.
On the other hand Y(0) = Y, thus
YO =C+——=Y,
thatis
o b
0 1-a
The solution of the initial value problem
Y (t) (Y b )c Tat 4 b
= — . a
 1-a € 1—a
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3. An application to the second ordered differential equation

Let the price of the product at the time ’t’is p(%), where pis a twice continuously differentiable
function. Let D(p(t)) and S(p(t)) the demand and offer according to p.. Let

D= D(p(t)) =3p" —p' —p+25,
and
S=S(p))=4p" +p +p+5.
Let furthet
p(0) =12, p'(0) = -2, D(0) = 20, S(0) = 20.
If the demand and offer are equal, we can calculate the price-function p(%):
3p"—p ' —p+25=4p" +p'+p+5
that is
p''+2p" +2p =20
which is a second ordered linear differential equation. It is clear that
pi () =10
is a particular solution of the equation.
The characteristic equation of the homogenous differential equation is
+21+2=0.
The solutions of this algebraic equation are
M=—-14+iésA, =—-1—1.
The real and imaginary part of 1,
a = Re(1y) = -1, B =Im(4,) = 1.
The general solution of the homogenous equation is
pu(t) =c;-e%t-cos(B-t) +c,-e*t-sin(B-t) (ci,c; € R)
thus the general solution of the inhomogeneous equation is
p(t) =py() +p;(t) =c,-e t-cost+c, et sint+ 10.
It can be shown that the solution of the initial value problem is
p(t) =2-e t-cost+ 10.
Taking the limit

. 2-cost

lim2-e”™ — 00

t—oo

‘cost = tlim

—00 e
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Figure 1. function of the price
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Application of the differential equations in case of
traffic lights
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Abstract. There are many real life applications of differential equations, which sometimes surprises high
school calculus students. Many students don't understand why they are bothering to learn differential
equations at all, but differential equations are very important parts of the study of economics, biology,
engineering and physics. Since differential equations can describe exponential growth and decay, they are
used to describe the half-lives of radioactive isotopes, the population growth of species or the change in
investment return over time. Many of the equations that describe major concepts in physics.

Introduction

We use differential equations in many part of common life. We introduce a physical application,
which used in the traffic. We calculate the brake distance and the brake time a of a defined
velocity vehicle. By using these parameters, we analyse the optimal lighting time of a traffic light
for the safe working.

1. Description of the model

1.1. Conditions of the model

Equation for dynamic equilibrum of a moving vehicle:
Y2F=Fy+F;+F,+Fg=0 (1)
where: Fy: tractive force of the motor which is deliered to the wheel
F¢: rolling resistance, which is caused by the shape-change of asphalt and wheel
Fi.: aerodynamic drag, it depends on the shape and the velocity of the vehicle
Fg: resistance by the ascent.

The interrelation of tractive force and resistances get over forces determines the dynamics of a
vehicle. If a vehicle makes rectilinear motion with a stationary velocity the tractive force
matches the sum of the resistances: Fy = Fgp. If Fy < Fgp;, the vehicle slows, otherwise it
accelerates. In this case we examined on a horizontal surface move, so the ascent-caused
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resistance could be ignored. The aerodynamic drag depends on the density of the air (p), the
drag coefficient (c), the end-surface and its quality (A) and the square of its velocity (v?):

FL=g'C'A'V2. (2)

Considering the moving of the vehicle, g, ¢, A are constant we use the folloving sign to simplify

the further calculating: k; = g- c-A.

Investigating the rolling resistance, we can disregard the pressure of the tire and we only
counted with the quality of the way by making the impending calculation.

Fg =G g 3)

where p is the rolling resistance factor, and G = m - g is the weight of the vehicle. Regarding
the rolling resistance we singed it as k. constant.

1.2. Inscription and solution of the differential equation
If we write down the equation of the motion, considering that the directions of the resistances
are opposite with the tractive force, we get the following connextion.

m'a:—FL_FG. (4)

By using that the acceleration- time function is derivation of the velocity-time function, and
replacing the resistances, we get:

m-v(t) = =k - v2(t) — kg.
Writing it to explicit form we get

¥(t) = (—ky - V() —ke) (5)

This is a separated differential equation. Using the sings h(v) = —k; - v — kg and g(t) = é have

to perform this relation:

1 J—
%dv = [g(vdt. (6)

Substituting the function in the right side and calculating the integration:

1 t+
[—dt=== @)
after replacing the left side, we completed the integration by using the [ x21+1 = arctgx form:
k
f 1 v 1 1 dv = 1 arctg(\/%-v) (8)
—kpv2—Kg - Kg ( T )z - Kg —k_L .
— +1 kg

Using (7) and (8) express 'v’ we get the following form:
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1 kL t+c
- - arctg — 'V ]|=—
‘/ kaL kG m

(v ()]

— to | — (). . VKeky
v(®) = tg~ (%) Vkeke | - 52 ©)
Let us suppose starting velocity is vy Its mathematical meaning is that the initial value of the
differential equations is vp=v(0).

Beacuse of this:

JKgk kekr| Kok
vo =v(0) =tg [— (é)-,/kaL]-%=tg [—C—‘m““|% (10)
Expressing the 'c’, and replacing the v(t) to the function we got the solution of the Cauchy
funciton:
m . < ki, )
arctg | — vy ).
Vkgky Vkeky

If we substitute to (9) the value of 'c’, we get

Cc =

v(t) = tgi—
| |

Using that the tangent and the arctangent functions are odd, and making the simplifications we
get that:

t K JRekL .
v(t) = —tg [E - Jkgk, — arctg (@Vo)] -%pal (11)

With the aim of the determinding the braking time, we calculate &moment when v(?)=0 that is t
fulfills the following equation

t k JKcK
—tg [Ef - JKkgky, — arctg (ﬁvo)] % =0.

Using that tgx=0 if x=0 and rearranging the equation we get:

t k
tg (el Wﬁ“"
GBL

k B
m-arctan( LYo

tf = chkl'\/kck]_‘. (12)



Conference on Problem-based Learning b University of Debrecen
in Engineering Education 10.10.2013 Ig] Faculty of Engineering
As the averaged distance of the vehicle is $(t) = v(t), that is
— (fyOdt = [T —tg| L i - LAY B
s= [, v(dt= [ —tg [m kgk; — arctg (mvo)] . dt. (13)

Taking the constans term out and writing down the tangent function with the quotient of the sin
and cos functions, we get the following form:

dt.

el i)
cos| ek — aretg J:_k)]

f'e0
=) fx)

The parity of the cos function, and using the = In|f (x)| + c identity we get

,/kaLsm[ Jkek, — arctg( ky )]

_ my/ksk; kaL df =
ok o o )|
cos|=-./ksk; —arct v,
m G"L g m 0
tr
= [kﬂLln cos[ v Kkgkyp, — arctg (mvo)] ]0 (14)

S—[—ln

By using the Newton-Leibniz Theorem

Ky -
[m-arctan( L0

1
_ \WXGRL/ VkaL) KoK |

_m kgk GoL _ k

5= cos|l _— vKeky arctg( kGLkL Vo)Jl ln

and simplifying the relation

cos [—arctg (J_ V0>]|(15)

s = klen cos [(arctg (ﬁ) — arctg (\/%VO) )” Zn cos[ arctg (ﬁ%)” (16)
using the arctga + arctg} = arctg( BB) trigonometrical identity we get the following relation:
kL Vo
s = kﬂln cos [arctg (—Vk‘,i}zvo Vka) ] - kmln cos [—arctg (\/%V())”. 17)
L 1 \/kG—k\/kG—k L GRL

Investigating the first term, completing the simplification and using that arctg0=1, and In1=0
we get:
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2lnlcos[(arctg(O))]l = Z1n|cos[0]| = =1n|1| = 0. (18)
kL kL kL

We could simplify the numbered (17) and (18) terms with using coszx=m

trigonometrical identity (which is come from the sin?x + cos?x = 1 identity), to use this form,
we have to square the cos function:

2

s = ——1In|cos |—arct ( K V) ——129n |cos |—arct ( K V)
Tk W= | s 8\ Jigk, VO

1m 1 1m 1 1 ml 1
n——o—w——————Imn-—- ——
ZkL 2 ZkL / 2 ZkL kLVOZ + kG
tg [arctg( ki, V0>] +1 <ﬁvo> +1 kg

Jkeks ko

So we get the brake distance:

= ———1In -

1m_ kv +Kkg
Sf = =—In————.
I 72k, kg

1.3. Technical remark (other way to solution of the previous differential

equation)

We can make the integration by using the thesis of replacement integration, so we get a
perspicuous form.

From the numbered (7.3) equation we get this simplier form:

t kgkL—arctg(‘/E )-m

G N
s = —Efo tg - G dt (19)

Introducing the

k
[t gk, —arctg <\/%UO> . m]
=t I i |
T " |
function, expressing 't’ and derivating it according to u, we get:

m-arctgu + arctg <\/k_6170 m
N

dt 1 1

du” " T Jik,

t =
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thus

ke, .dt_ _Jkem o201t g ml .20, ml 2
s=—2fug=—ET [ on e dus —n gy [ du=—ggn( +u). (20)

Using the definition of the 'u’, we get that
2

t-,/kaL—arctg(‘/%vo)-m (2 1)

—_1m 2y _1m
s = szln(1+u)— 21(Lln 1+ |tg -

2. Application to the traffic lights

In case of the traffic lights, we meet the following problem:

The driver is coming to the crossing -- supposing that he is moving with the speed limit --, he is
seeing the light as green from this far, but as he is coming closer, it changes to yellow. Now, he
has to decide to stop or -- because of the shortdistance and the high gear -- go on. The traffic light
has to stay yellow long enough to drivers could get to the other side in safe. This reaching time
depends on the reaction time (t:), the brake distance (s¢) the width of the crossed road (s,), and
the lenght of the car (s,).

1m, kvy? + kg
Sf+Sn+Sa fk_Llnk—G-l_S"-l_Sa
tiamp = tr+v—0:tr+ Vo

3. An example

The previous general model we illustrate an a concrete example. Let the Mercedes Benz CLA
Coupe. This vehicle has a perfect drag coefficient (c=0.23). It is well known that the
gravitational acceleration is g= 9,81 m/s* and the rolling resistance factor (on asphalt) pg=
0,015. If we have the following datas

Density of the air: p=1,2kg/m?
The size of the end-surface: A= 2,21 m?
The weight of the vehicle: m=1390 kg
The lenght of the vehicle: Sa=4,630 m
Reaction time: t,=1s

Two laned street width: 2:3,5=7m
The value of ki and k¢ by the precious datas:

p 1,2
k; =E-c-A=T-O,23-2,21 = 0,30498
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ke=Fg=m-g-pc = 1390-9,81-0,015 = 204,5385.

If the braking force is a constant, F=4000 [N] and the starting velocity is v(0)=13.8 [m/s] then

the braking time 4.25 [s]. Thus if we want to stop safely the traffic light has to stay yellow about
5-5.5 [s].

The next function shows the braking length if we change the velocity of vehicle:

300
200
100 S
I} 1 ! I ' I ' 1 ' 1 ' 1
0 10 20 30 40 50
¥y
Figure 1. function of braking length
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Meéréssel és szamitogéppel tamogatott mozgastani
programelem kozépiskolasoknak és
egyetemistaknak

Program module supported by computer and
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university students
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We recommend our program module “The Language of Mechanics’, which is supported by TAMOP -4.2.3-
12/1/KONV-2012-0048, mainly to graduating secondary school students, but it can be also a useful
practical supplementary help for college and university students for the subject Dynamics. The main aim
of the program module can be summed up in two simple questions: Can the motion of a body be really
calculated with the help of a piece of paper, pencil and maybe a calculator? If yes, to what extent do the
calculated values correspond to the measured ones? We realize the above mentioned aim by studying a
rolling motion problem theoretically and experimentally. For the experiments we apply a set-up which
has been recently developed at the Faculty of Engineering University of Debrecen.

Bevezetés

A ,TAMOP-4.2.3-12/1/KONV-2012-0048 Tudomanyos eredmények elismerése és
disszeminacidja a Debreceni Egyetem kutatdi, oktatoi és hallgatoi altal” cim{ palyazat keretében
megval6suld ,Mechanikus beszéd” cimili programelemet tizenkettedik osztalyos kozépiskolas
didkoknak ajanljuk, de hasznos gyakorlati kiegészitést nyujt egyetemistaknak és féiskolasoknak
is a Mechanika azon belil a Mozgastan cim( tantadrgyhoz. Emellett hasznos Otleteket
merithetnek bel6le a kdzépiskolas fizika tandrok, valamint a Mozgastan cim{ tantargy oktatdi is.

1. A programelem célkitlizései

A programelem célkitizése néhany egyszerd kérdésben megkdozelitve az alabbi:

Vajon egy papir, ceruza esetleg egy sziamitogép segitségével tényleg elre ki tudjuk szamitani
egy test mozgdsdt? Ha igen, akkor mennyire egyeznek a szdmolt értékek a gyakorlatban
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tapasztaltakkal? Ha fizikusok elore ki tudjik szamolni egy meteorit, vagy listokos mozgdsdt,
akkor miért ne sikeriilne nekiink is hétkoznapi testek esetén?

A programelem keretében a gordiil6 mozgassal foglalkozunk, ezen a konkrét mozgastipuson
keresztiil valositjuk meg a fenti célkitlizést. Egész pontosan egy lejtére helyezett tomor,
homogén henger mozgasat vizsgaljuk kiilonb6z6 kisérleti paraméterek (lejté hajlasszoge és
hossza, a henger gordiilési ellenallasa) mellett. Minden esetben a gordiilési id6t hatarozzuk meg,
el6sz6r mérés, majd szamitas utjan, végiil a kapott értékeket 6sszehasonlitjuk.

A méréseket a DE MK Miiszaki Alaptargyi Tanszékén késziilt kisérleti eszkozon (Z. dbra)
valositjuk meg.

1. dbra: Fényképek a kisérleti eszkézrdl

Az eszkoz egy aluminium idomokbdl felépitett lejtd, amelyen egy tomor, rozsdamentes acélhenger
gordal. A lejté hossza és hajlasszége, valamint a henger gordiilési ellendlldsa — egy a hengerre
hazhaté polifoam csé segitségével — valtoztathatd. (A polifoam csé a henger gordiilési ellenallasat

jelentésen megndveli, igy alkalmazasaval a gordilési id6 jelentésen megnd.)

2. A programelem bemutatasa

Mind a szamitasokat, mind a méréseket a didkok végzik el oktatoi irdnyitassal. A programelem
végrehajtasanak l1épései a kovetkezdk:

Elméleti ismeretek attekintése

* Az oktatok a gordiil6 mozgassal kapcsolatos kérdéseket vetnek fel, majd a didkokkal
kozosen megvalaszoljak azokat, ezaltal megkozelitve a problémat.

* Egy PowerPointos diasor segitségével (2. dbra) az oktatok és a didkok koézosen
attekintik a gordiilési id6 szamitasahoz sziikséges mechanikai, matematikai
(trigonometriai, egyenletrendszer-megoldasi) és szamitastechnikai ismereteket.

A gordiilési idé meghatdrozdsa - nincs polifoam csé a hengeren

Adatok: s= 1,38m, a=3° (5 db mérés)
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* A hallgaték lemérik a gordiilési id6t, majd a GeoGebra [1] programmal kiszdmitjak a
mért adatok atlagértékét és szorasat.

¢ A hallgaték a GeoGebra programmal kiszamitjak a gordiilési id6t, majd a szamitott és
mért értékeket 6sszehasonlitjak.

A gordiilési ellendllds karjdnak meghatdrozds - polifoam csé a hengeren
Adatok: s=1,364m, a=3° (5 db mérés)

* A hallgaték lemérik a gordiilési id6t, majd a GeoGebra programmal kiszamitjak a
meért adatok atlagértékét és szorasat.

* A hallgaték az Excel [2,3,4] program segitségével kiszamitjdk a rozsdamentes
acélhengerbdl és polifoam cs6bdl allé rendszer tehetetlenségi nyomatékat, majd a
mért gordiilési id6 ismeretében a gordiilési ellenallas karjat (3. dbra, G és J oszlopok).
(A fenti két adat ismeretében a gordiilési id6 mar barmely szogérték és lejtéhossz
esetén szamithato.)

A gordiilési id6 meghatdrozdsa - polifoam csé a hengeren
Adatok: s= 1,364m, a=5° (5 db mérés)

* A hallgaték lemérik a gordiilési id6t, majd a GeoGebra programmal kiszamitjak a
meért adatok atlagértékét és szorasat.

* A hallgatdék az Excel program segitségével - a tehetetlenségi nyomaték és a gordiilési
ellenallas karjanak ismeretében - kiszamitjak a gordulési idét (3. dbra, L oszlop),
majd 0sszehasonlitjak azt a mért értékkel.

Tovdbbi ismeretek és érdekességek kozlése. Kotetlen beszélgetés

Az oktaték a gordiiléshez kapcsolédd tovabbi, kiegészité informacidkat, érdekességeket
ismertetnek meg a hallgatékkal (pl.: ciklois gorbék fogalma és szerepiik a gordiilé mozgéas
lefrasaban, brachisztochron probléma) majd kotetlen beszélgetést folytatnak a didkokkal a
mechanikarol és altalaban a mérnokképzésrol.

: T & A gordiilési ellenallas
Tiszta gordules i é’w figyelembe vétele
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Adatok: —_— Y F=m-g+Fx=m-as
m=05[kg] R=005[m] s=2[m] a=10" g=981 Lﬂz}
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2. dbra: Didk a PowerPointos diasorbol
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3. dbra: Excel tiblazat a tehetetlenségi nyomaték, a gordiilési ellendlldsi kar, valamint a gordiilési ido
szdmitdsdhoz

A kisérletek és szamitasok soran a didkok munkajat nyomtatott segédanyagok is segitik (4
dbra).

Gordulési ellenallasi kar és tehetetlenségi nyomaték szamitasa — polifoam csé a hengeren

Adatok: s =1364m, =3 g =081
=

k=R -|fga-

2500 +(m+m 3R k

t -gocosa-'m+m -R°

Adafok :m =0,006 kg R =0,033m

5 R
+
Ja + T - Jy
1 .
mOR+RY + —m R - Ty

4. dbra: Nyomtatott hallgatoi segédanyagok
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3. Osszefoglalas

A ,Mechanikus beszéd” cimli programelem a ,,TAMOP-4.2.3-12/1/KONV-2012-0048
Tudomanyos eredmények elismerése és disszeminacidja a Debreceni Egyetem kutatéi, oktatéi és
hallgatéi altal” cim{ palyazat keretében val6sult meg.

A programelem a gordilld6 mozgas vizsgalatdn Kkeresztill bemutatja, hogy a mechanika,
matematika és szamitastechnika eszkozeinek 6sszehangolt alkalmazasaval hogyan szamithato ki
egy fizikai test mozgasa, majd a kisérleti megvalositdson keresztiil bemutatja az elmélet és a
valdsag kapcsolatat. A haromoras interaktiv foglalkozas soran a kézépiskolas didkok betekintést
nyernek a Newtoni mechanika vildgaba, és hasznos gyakorlati és elméleti ismeretekre tesznek
szert. Személyesen tapasztaljdk meg, hogy egy gyakorlati probléma megoldasa hogyan
kivitelezhet6 tobb tudomdanyteriilet eszkdzeinek egylittes, 6sszehangolt alkalmazasaval.

Felhasznalt irodalom

[4] All6 G., Tdblizatkezelés Felséfokon, Miiszaki Konyvkiadé Kft, 2002.
[5] Bartfai B, 7Tdbldzatkezelési gyakoriatok, BBS-Info Kft, 2003.

[6] GeoGebraWiki International http://www.geogebra.org/en/wiki/index.php/Main_Page

[7] Kovalcsikné Pintér O., Az Excel fiiggvényei A-tol Z-ig, ComputerBooks Kiaddi Szolgaltat6 és
Keresked6 Kft, 2000.
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Az SVM moédszer alkalmazasa egy miiszaki
optimalizacios problémaban

Applying the SVM method in an engineering
optimization problem

A. VAMOSI

University of Debrecen, (vamosi.attila@eng.unideb.hu)

Abstract. Machine learning is applied in many areas of science to problem solving. Although the
method is appropriate to solve engineering problems as well, applications in technical areas
have not yet been widely adopted.

[n this work the SVM (Support Vector Machine) method has been chosen from several options to
investigate a specific engineering problem. This work aims to demonstrate that SVM with a
Structured set of training data and correct parameter selection is suitable for solving
engineering problems.

In this example the original problem is traced back to regression. First generate the set of
training data, then determine the hyper-parameters using grid search and n-fold cross-
validation. Finally, finding the input values belonging to minimum of the resulting function we
get the solution of the original problem.

Bevezetés

A gépi tanulds célja, egy olyan algoritmus fejlesztése, mely miikodése sordn a szerzett
tapasztalatai alapjan képes javitani sajat hatékonysagat. Az SVM (Support Vector Machine -
tartovektor ,gép”) egy olyan modszer, mely a statisztikai tanulast hasznalja fel ugy, hogy a
dontési hatart tanulépontok egy részhalmazaval (tartévektorokkal) reprezentalja. Az SVM jol
hasznalhaté osztalyozasra (szeparalasra) és filiggvénykozelitésre (regresszidra). Gyakorlati
alkalmazasanak hatékonysaga abban rejlik, hogy szdmos probléma megoldasa visszavezethet6
erre a két feladatra.
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1. Az SVM modszer elmélete

1.1. Osztalyozas

Osztalyozas 1ényege, hogy adott entitasokat (valamely dolog tulajdonsagainak az 6sszessége)
elére rogzitett szamu kategdridkba (osztdlyokba) soroljunk. Az osztalyozasi célfeladat olyan
modell készitése, mely a tanul6-adatbazis alapjan képes a tanitas soran nem latott entitasokat is
jol osztalyozni. Az entitasok leirasa valés vektorokkal (jellemzdévektorokkal) torténik. A tanulé-
adatbazis jellemzévektorokbdl és a hozzajuk tartozoé helyes osztalycimkékbdl (az adott entitas
melyik osztalyba tartozik) all:

{x;,y:)} ,aholi=1,2,..,n ésy; =+1,—1

1.1.1. Linedris osztdlyozds

Egy mintat tobbféleképpen szeparalhatunk. Linearis osztalyozas esetén a kiilonb6z6 osztalyokat
egy hipersik valasztja el egymastdl. A hipersik egyenlete:

wix+b=0

A pontot aszerint osztalyozzuk, hogy a hipersik melyik oldalan helyezkedik el. Azok az x-ek
melyekre
wix+b>0

az egyik osztalyba, melyekre
wix+hb <0

a masik osztalyba tartoznak.

Tanitas sordn a tanul6-adatbazis pontjait szétvalasztd egyenest (hipersikot) keressiik. Szamos
lehet6ség koziil keressiik a legjobbat (az optimadlis hipersikot), melynek a lehet6 legnagyobb a
margoja. Cél, hogy a szeparald hipersik tavol legyen a mintapontoktél, mert a nagy margdval
rendelkezd dontési hatarok jobban altaldnositanak.

Margo alatt az elvalaszt6 hipersikkal parhuzamos sikokkal megadott olyan térrészt értjiik, amely
nem tartalmaz tanulépontokat. A margok egyenletei:

wix+b=1 és wix+b=-1

Azokra a pontokra, melyek a margét hatarold sikokra esnek (tartévektorok, support vectors)
fennall, hogy:

WTX(+) +bhb=1 és WTX(_) +b=-1
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Ezek segitségével leirhaté a marg6 szélessége:

w2
M = (%) = X)) "= (X = X) wll  Tiwll

Ezt kell maximalizalni ugy, hogy az y;= +1 osztalycimkéjli tanulépontokra
wix; +b>1

és az y;= -1 osztalycimkéjii tanul6pontokra
wix; +b < -1

legyen. Azaz a dudlis feladat:

1
minEIIWII2 az  y;(wTx; +b) > 1 feltétel mellett

A dudlis feladat egy kvadratikus programozasi feladat linearis feltételekkel. Lagrange szorzék
bevezetése és az eredeti valtozok szerinti parcidlis derivaltak nullava tétele utdn a feladat

n
w = z a;yiX;
i=1

A Karush-Kuhn-Tucker feltétel alapjan:

eredménye:

a;(y;(Ww'x; +b) —1) =0
vagyis csak a tartovektorok esetén lesz a; # 0, igy az eredmény:

W = z a;yiX;

iesv
b pedig az alabbi egyenletbdl szamithato:

yi(WTXi + b) —-1=0

Az optimalis hipersik egyenlete linearis osztalyozas esetén:

gx)=wlx+b= Z a;yX;X+b
iesv

Ha felépitettik az optimdlis hipersikot, akkor egy tetszéleges =z pontot az alabbi
dontésfiiggvénnyel osztalyozhatunk:

d(z,a) = sgn (Z a;yX;Z + b)

1ESV
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1.1.2. Linedrisan nem szepardlhato eset

El6fordulnak olyan halmazok, melyek linedrisan nem szeparalhatéak. A miiszaki problémak
tobbsége éppen ilyen lesz. Ebben az esetben szdmolnunk kell a hibaval.

Az osztalyok kozotti elvalasztds margojat lagynak (soft margin) nevezziik, ha egy vagy tobb
tanulépont megsérti az

y;(wTx; +b) > 1
egyenldtlenséget. Tehat lesznek olyan 7 indexek, hogy
* azx;tanuldpont jo oldalon van, de a két margd kozé esik, illetve

* azx;tanuldpont az elvalasztd sik nem megfelel6 oldalara esik.

Az ilyen feladatok megolddsdhoz vezessiik be a nemnegativ {fl}flzl segédvaltozokat (gyengité

vdltozok, slack variables), és csak az
yiwTx; +b) 2 1-¢

egyenlétlenség teljesiilését koveteljiik meg. Viszont ezt a hibat is korlatozni kell, tehat ¥V &

legyen a lehetd legkisebb. Azaz ebben az esetben az

1 N
SIwl+¢ ) g,
i=0

dudlis feladat minimalizalandé a fenti feltételek teljesiilése mellett. Az els6 tagot a jo hipersik
keresése, a masodik tagot a tapasztalati hiba kontrolldldsa miatt minimalizaljuk. A szabadon
valaszthaté >0 paraméterrel e két tényez6 kozotti viszony szabalyozhaté. Ha a € Kicsi, akkor a
marg6 maximalizalasa kap nagyobb hangsulyt, ebben az esetben a modell jél altalanosit, de a
hiba nagyobb mértéki lesz. Ha a € nagy, akkor a hiba mértékét csokkentjiik, de a margd nem
lesz maximalis, igy a modell altalanosit6 képessége rosszabb.

A hibak kikiiszobolése érdekében az SVM a mintaelemeket egy ¢: RP - R? (p < q) nem linearis
fliiggvénnyel egy magasabb dimenzids térbe, az tgynevezett tulajdonsagok terébe (feature
space) képezi, és ott illeszti az optimadlis hipersikot. Ehhez nincs sziikség explicit modon a
tulajdonsagok terére, csak az azon értelmezett bels6 szorzatra.

A hipersik egyenlete kifejezhetd a tanulépontok bels6 szorzataival és az optimalizacié soran is
csak a bels6 szorzatokat hasznaljuk. Mivel a jellemz6tér dimenzidja nagyon nagy, akar végtelen
is lehet, a feladat megoldasa tal bonyolultta valik. Az Uin. Kernel triikk segitségével viszont ezek a
feladatok is egyszer(en, linedrisan megoldhaték. Ehhez csupan még egy transzforméacioéra van
sziikség, és a feladatot nem a tulajdonsdgok terében, hanem a kernel térben oldjuk meg. A
tulajdonsagok tere és a kernel tér kozott a skalar szorzat teremti meg a kapcsolatot. Minden
olyan K(x;x;) magfiiggvényhez, amely kielégiti a Mercer-tétel feltételeit, létezik egy
tulajdonsagtér, melyben ez a mag generalja a bels6 szorzatot. Vagyis a kernel tér definidlasahoz

valasztanunk kell egy megfelel6 kernel fiiggvényt.
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Az osztalyozashoz hasznalhat6 magfiiggvények példaul:
e linedris kernel:
K, x;) = (x,x;)
¢ polinomialis kernel:
K(xx;) = ((x,x;) + 1)?
»  RBF (Radial Basis Function) kernel:
K(x,x;) = exp(—ylx — xl|*)
e kétszinti kernel:

K(Xr Xi) = tanh(BO(x, Xi) + Bl)

igy a kernel trilkk segitségével egy tetszéleges z pontot az alabbi dontésfiiggvénnyel

d(z,a) = sgn (Z a;y;K(z,x;) + b)

1ESV

osztalyozhatunk:

1.2. Fiiggvénykozelités (Regresszid)

Az SVM hasznalhat6 fliggvénykozelitésre (regressziora) is. Az osztalyozas és a regresszid kozott
a kapcsolatot egy un. € érzéketlenségi savval rendelkez6 abszolutérték hibafiiggvény (e-
insensitive loss function) alkalmazasa adja.

0 hald —yX)| <e

L:(y) = {ld —yx)|—¢ egyébként

A regresszio megfeleltethet6 egy olyan osztalyozasi feladatnak, ahol a helyes osztalyozas hibaja

0, mig a rosszul osztalyozott pontokat gyengit6 valtozok bevezetésével biintetjiik.

A minimalizaland¢ koltségfiiggvény igy:

N
1 !
~lwlP? +c;(a +E)

A dudlis feladat végrehajtadsa utan kapott eredmény alapjan egy tetszdleges z pont értékét az
alabbi fiiggvénnyel hatarozhatjuk meg:

y(@) = ) (@ - aK@Ex) +b
iIESV

Regresszids feladatnal a margé szerepét 1ényegében az € hiperparaméter alkalmazasa veszi at. A
marg6 szélessége maga az & paraméter. Minél nagyobb & értéke, annal simabb megoldast
kapunk. Minél kisebb ez az érzéketlenségi sav, annal pontosabban prébalja a modell a
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tanulépontokra illeszteni a megoldast. Ez arra készteti a modellt, hogy minden pontot j6l (kis
hibaval) kozelitsen, ami tdltanuldshoz vezethet. A megoldas hibdja és komplexitdsa kozotti
kapcsolatot regresszidnal is a € paraméter adja meg, éppen ezért € és C értékét 6sszehangoltan
kell megvalasztani.

2. A feladat bemutatasa

2.1. A rugdkarakterisztika

Az iparban hasznalatos gumialkatrészeknek szamos feltételt kell teljesitenilik ahhoz, hogy
feladatukat megfelel6en el tudjak latni. Egyik ilyen feltétel, hogy rugékarakterisztikajuknak
(adott nyomoéer6hoz tartozé dsszenyomodas mértékét abrazold grafikon) egy eldirt alakot kell
felvennie az adott terhelések hatdsara. Egy ilyen karakterisztika lathat6 az 1. dbran.

40,
351
30 -
251
20 -
15

Nyomaerd [kN]

10 4

El&irt
karakterisziika

0 5 10 15 20 25 30 35 40

Osszenyomaodas mértéke [mm]

1. dbra, Eloirt rugékarakterisztika

Ez a karakterisztika fiigg a gumialkatrész geometriai méreteit6l. Az azonos alaku, de kiilénb6z6
méreti gumialkatrészek azonos terhelés hatasara kiilonb6z6 méretli alakvaltozast
(0sszenyoméddast) szenvednek el. Annak meghatarozasa, hogy egy adott rugdkarakterisztika
milyen geometriai méretekkel érhet6 el egy optimalizalasi feladatnak tekinthet6.

2.2. A gumialkatrész geometriaja

Példankban egy hengeres kialakitasu gumialkatrész méreteit szeretnénk optimalizalni. Az
alkatrész magassaga (h) és kiils6 atmérdje (D) adott. A bels6é atméré (d), és a kiils6 palast fels6
és also eltérése a kiils6é atméréhoz képest (f; és f.) valtozd, ezeket kell optimalizalnunk.
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2. dbra, A gumirugo geometridja

A harom optimalizdlandd paraméter - a gyartastechnoldgia pontossagabdl adédoan - a belsd
atmérdé esetén 2 mme-es, a kiils§ palast eltérések esetén 1 mm-es lépcsékben az alabbi
tartomdanybol valasztandé:

e 16mm<d<24mm
e -Smm<fi<5mm
e -Smm<f,<5mm

Fentiekbdl ad6d6an az 6sszes lehetséges variacié 605 darab kiilonb6z6 méreti gumialkatrészt
eredményez. Ezek kozill keressiik azt az egyet, melynek rugdkarakterisztikdja a legjobban
megkozeliti az el6irt karakterisztika alakjat.

2.3. A probléma visszavezetése

Az optimalizalasi feladat soran elérend6 célunk az eléirt és az adott geometridhoz tartozo
karakterisztikdk kozotti teriilet minimalizaldsa. A karakterisztika gorbéje alatti teriilet a
nyomderd altal a gumialkatrészen végzett munka nagysaga. A két gorbe kozotti teriilet az un.
munkakilonbség (4W). Ezt kell minimalizalnunk.

A feladat megoldasdhoz az eredeti problémat visszavezetjiik regresszios feladatra, mivel az 1.2.
pont alapjan mar lattuk, hogy regresszios feladat megoldhaté SVM haszndlataval.

A feladat megoldasat arra alapozzuk, hogy a geometriai méretek (mint bemeneti értékek) és a
munkakilonbségek (mint kimeneti értékek) kozott kell lenni valamilyen osszefiiggésnek, és egy
ezt az Osszefliggést leird fliggvénynek. Az SVM modszerrel ezt a fliggvényt fogjuk megkeresni.
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3. dbra, A munkakiilonbség (AW)

3. Az alkalmazas

A modszer alkalmazasanak négy 1épése lesz:

¢ 1.1épés: a tanulépontok kivalasztasa és a tanuléhalmaz eldallitasa
e 2.1épés: kernel fliggvény kivalasztasa és a hiperparaméterek meghatarozasa
e 3.1épés: az optimalis hiperparaméterek keresése

e 4.1épés: aregresszio végrehajtasa az optimalis hiperparaméterekkel

3.1. Tanul6pontok kivalasztasa

Egy adott geometridhoz tartoz6 karakterisztika végeselem modszer (Finite Element Method,
FEM) hasznalataval [2] meghatarozhatd. Ez az eljaras rendkiviil idSigényes, az 6sszes elemre
torténd kiszamitasa rengeteg id6t venne igénybe. A raforditott id6 nagymértékben csokkenthetd
az SVM modszer hasznalataval.

Az SVM mikodéséhez sziikségiink van tanulépontokra. Ebben a példaban 27 tanul6épontot
valasztunk ki Ugy, hogy mindhdrom optimalizdlandé valtozonak vessziik a széls6értékeit és a
kozépértékeiket. igy 3x3x3, azaz 27 kiilonb6z6 geometria adédik. Csak ezekre a geometridkra
hatdrozzuk meg a karakterisztikakat és szamitjuk ki a munkakiilonbségeket.

A 27 tanulépontbdl jon létre a tanul6halmaz, mely 1ényegében 27 darab 3 elemii vektort és a
hozzajuk tartoz6 munkakiilonbség értékeket tartalmazza: {(x; y;)}, aholi =1, ..., 27 és y;az i-
edik paraméterharmashoz meghatarozott munkakiilénbség.



Conference on Problem-based Learning University of Debrecen

in Engineering Education 10.10.2013 Faculty of Engineering

Optimalizalasi
tartomany

4. dbra, A tanulopontok és az optimalizaldsi tartomdny

3.2. Kernel fliggvény és a hipermaraméterek

Mivel a probléma linedrisan nem szeparalhaté eset, igy az osztdlyozast az Un. kernel-triikk
alkalmazasaval a kernel térben fogjuk végrehajtani. Ehhez valasztanunk kell egy alkalmas kernel
fliggvényt, mely megadja a kernel térben értelmezett belsé szorzatokat.

Ebben a példaban a leggyakrabban hasznalt RBF kernelt alkalmazzuk. A radialis bazis
fiiggvénynek egy paramétere lesz ()), ez lesz az egyik hiperparaméter. Mivel regresszids
feladatot oldunk meg, igy hasznalunk egy s-€érzékenységii veszteség fliggvényt (& lesz a masodik
hiperparaméter) és a nem linedris probléma miatt azzal, hogy megengedjiik a gyengitett margo
hasznalatat bevezetiink egy C bilintet6 paramétert is (ez lesz a harmadik hiperparaméter).

Tehat harom hiperparamétert fogunk hasznalni:
e &-érzéketlenségi tényezd (a regresszié pontossagahoz)
e y-Kernel paraméter (a bels6 szorzatok meghatarozasahoz)

e (- blintetd paraméter (a gyengit6 valtozok hatdsanak szabalyozasahoz)

3.3. Az optimalis hipermaraméterek keresése

A hiperparaméterek megvalasztidsa nagymértékben befolydsolja az SVM miikodésének
pontossagat. A nem megfelel paramétervalasztas konnyen a tdltanulas problémajihoz vezethet.
Tultanulas vagy tulillesztés esetén az eredményil kapott fiiggvény latszélag hibatlanul vagy
minimadlis hibaval illeszkedik a tanul6pontokra, de éppen ez adja a hibajat. Az ilyen fiiggvények
tul nagy mértékben fiiggnek a tanulépontoktdl, vagyis ott tokéletes az illesztés, de a tobbi

pontban nagy eltérések adédhatnak.
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5. dbra, A tiltanulds veszélye

Az 5. abran lathatunk egy példat a tultanulasra. Az eredeti fiiggvény a sotétkékkel jelolt egyenes.
Az errdl a fliggvényrol levett sotétkék szinli tanuldopontokra illesztiink egy regresszids fiiggvényt.
A piros szini gorbe egy tultanuldssal kapott fliggvény, mely a sotétkék tanulépontokban
hibatlanul adja az eredményt, de a vilagoskék tesztpontokban (melyeket nem hasznaltunk fel a
tanitashoz) nagymértéki hibat general.

A taltanulas veszélyének esélyét mar a hiperparaméterek keresése kézben is csokkenthetjiik. Az
un. keresztvalidacié alkalmazasaval a paramétereket teszteljiik ugy, hogy a tanuldpontokat tobb
részhalmazra osztjuk és a tanitdsra nem hasznaljuk fel mindegyik részhalmazt, hanem egyet
félretesziink és azokat a pontokat tesztelésre hasznaljuk. A paraméterek ellenérzését annyiszor
hajtuk végre, ahany részhalmazra osztottuk a tanul6pontokat ugy, hogy mindig egy masik
halmazt hagyunk ki a tanitasbol. Igy végiil az 6sszes tanulépont fel lesz hasznalva tanitasra és
tesztelésre is.

A hiperparamétereket egy elére definidlt tartomanyban keressiik. A kivalasztott
paraméterparokkal végrehajtjuk a keresztvalidaciot és vizsgaljuk a tesztpontokra kapott
hibdkat. A grid search-nek nevezett eljaras végén megkapjuk az adott tartomanyban legkisebb
hibaval miikod6 paramétereket, ezek lesznek az optimalis hiperparaméterek.

Ebben a példaban a hiperparamétereket az alabbi tartomanyokban keresstik:
e &-érzéketlenségi tényezSt a [10-4; 10-2] tartomanyban
e y-Kernel paramétert a [10-5; 10+5] tartomanyban

e (- Dbilntet6 paraméterta [10-5; 10+5] tartomanyban
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3.4. A regresszio végrehajtasa az optimalis hiperparaméterekkel

Végiil a grid search és a keresztvalidacié eredményeként kapott optimalis hiperparaméterekkel
meghatarozzuk a Lagrange egytitthatokat. Az igy kapott képlet segitségével kiszamitjuk mind a
605 kiillonb6z6 alkatrész munkakiilonbségét. Ezek koziil a legkisebb kiilonbség lesz az optimalis
geometridhoz tartozé munkakiilénbség, ennek az alkatrésznek a rugdkarakterisztikaja fog a
legkisebb mértékben eltérni az elvart karakterisztikatél. A legoptimalisabb az lenne, ha a
legkisebb kiilonbség nulla lenne, de mivel nem konkrét geometria meghatarozasa a feladat,
hanem egy készletbdl valé valasztds, igy az optimdlis eredmény a legkisebb eltérés lesz.
(Természetesen a modszer alkalmas a pontos geometria meghatarozasara is.)

4. Az eredmény

A grid search és a keresztvalidacié eredményeként az optimalis hiperparaméterek:

=102 y =101 C =102
Az optimalis hiperparaméterekkel Kkiszamitott Lagrange egylitthatokkal meghatarozott
regresszios fiiggvénnyel kiszamitva mind a 605 kiilonb6z6 alkatrész munkakiilénbségét a
legkisebb érték AWnin=0,2735]-ra adodott. Az ehhez az értékhez tartoz6 geometriai

paraméterek:
d=16mm ff=2mm fa=3 mm

Ellen6rzésképpen a kapott geometriai paraméterekkel, a végeselem mobdszer Aaltal
meghatarozott karakterisztikat és az eldirt karakterisztikat egy grafikonon dbrazolva is lathatjuk
ezt a minimalis kiilonbséget. Tehat az eredmény megfeleld, és az SVM modszer alkalmas ilyen

optimalizacids feladatok elvégzésére.
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6. dbra, Az eldirt és az optimdlis karakterisztika
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Szamitogéppel tamogatott ,,SZfN-]éték"
programelem

Supported by computer , SZIN-Jaték” program
element

PERGE E.

Debreceni Egyetem M{iszaki Kar, perge@eng.unideb.hu

Abstract. ,SZIN-Jaték” programme element was realized in the framework of “TAMOP-4.2.3-12/1/KONV-
2012-0048 Acknowledgement and dissemination of scientific achievements by the researchers, teachers
and students of the University of Debrecen” project. The aim of this programme element is to provide
comprehensive knowledge about colour theories and their applications by using colour paints, colour light
and our Colour Theory multimedia training tool that was developed at the Faculty of Engineering of the
University of Debrecen. Our training tool is recommended for engineering and arts students of high
schools and universities.

Bevezetés

A szinelméleti ismeretek oktatasa Magyarorszagon szamos tantargy (rajz, fizika, kémia, biologia,
miivészettorténet...) keretében valdsul meg, de a tanulék nem kapnak atfogd képet a
szinelméleti  ismeretekrél.[1] A  ,TAMOP-4.2.3-12/1/KONV-2012-0048 Tudoményos
eredmények elismerése és disszeminacidja a Debreceni Egyetem kutatdi, oktat6i és hallgatoi
altal” cim@ palyazat keretében megvalésulé ,SZIN-Jaték” cimii programelem bemutatja a
szinelméleti ismereteket és alkalmazasokat. Programunkat ajanljuk koézépiskolasoknak és
egyetemistaknak a miiszaki és a miivészeti képzésében.

1. A programelem célkitizései

A ,SZIN-Jaték” cim(i programelem célja atfogé ismeretet adni a szinelméletrdl és azok
alkalmazasardl a szines festékek, a szines fények és a multimédids Szintani oktatéprogram
alkalmazasaval, melyet a Debreceni Egyetem Miiszaki Karan fejlesztettiink ki.

Feladatunk a tanul6k vizudlis megfigyel6, megismerd, befogado, alkoté képességeinek
fejlesztése, valamint a szinmeghatarozé és szin megkiilonboztetd képesség fejlesztése.
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2. A programelem felépitése

A programunk vendégei jatékos formaban ismerkednek meg a szinekkel, a szinlatas
folyamataval, a szinkeverés elméleti és gyakorlati kérdéseivel, a festékszinek és a fényszinek
keverésével, a szinharmoéniaval és alkalmazasaval.

A programelem végrehajtdsanak 1épései a kovetkezdk:
Elméleti ismeretek dttekintése

* A programvezetd szinekkel kapcsolatos kérdéseket vet fel, majd a didkokkal kézosen
megvalaszoljak azokat, ezaltal megkdozelitve a problémat.

* Egy PowerPointos diasor segitségével a programvezetd és a diakok kozosen
attekintik a szinekkel kapcsolatos ismereteket.

» Osszekapcsoljadk és rendszerezik a kiilénb6z8 tantargyak keretén beliil tanult
ismeretanyagot (1. dbra)
e fizika 6ran tanult fénytan, fénytorés, fényvisszaverés [4]
* kémia d6ran tanult reakciok soran keletkezg szinvaltozasok
* Dbiolégia oOran tanult szem és agy miikodéséhez kapcsoldodd szininger,

szinészlelet[5]

* rajz oran tanult festékek keverésének elméletét.[2][3]

A szem felépitése,
EREICERCIEIREE]

A lathaté fény frekvencia- és
hulldamhossz-tartomanya
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1. abra. Didk a PowerPointos diasorbol

¢ A tanulék megismerik
e op-art, azaz optikai miivészet jeles képviseldit és azok alkotasait, amelyben az
atlagos geometriai és matematikai torvények hatnak, s lehetdvé teszik, hogy
optikai hatasuk révén a térérzet, a mozgas és a vibralas érzetét keltsék.

11000001100000000000000
110000011000000H0000001
110000011000000H00000601
100000011000000M000000
100000001000000H00000010
10000001100000000006000
10000001100000000000000
100000011000000100006001

* az optikai illuziok fajtait, a geometriai, a fény valamint a szin illazioit.
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Elméleti ismeretek a gyakorlatban

¢ Festékszinek keverése

* Nyomdaipar, nyomtato...

» Egy centrifugabdl készitett forgotarcsa segitségével a mozgas hatasara keverednek
a szinek.

» AKkisérletben csak a 3 alapszint hasznaljak égaiigk a |étrejott kevert szineket.

Yellow J

2. dbra. Festékszinek keverésének elmélete gyakoriata

e Fényszinek keverése

¢ TV, monitor, telefon
* Szines fényl (zo6ld, kék és piros) lampak alkalmazasaval hoznak létre kevert

szineket. pl.:sargat
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3. dbra. Fényszinek keverésének elmélete gyakorilata

* Arésztvevok megismerkednek egy sajat fejlesztésii szintani oktatéprogrammal.

SZIMELMELETI OKTATOPROGRAM

4. dbra. Szintani oktatoprogram

Az oktatéprogram a szinelméleti ismeretek leirasan tul bemutatja a szinkeverés
elméleteit, a szinredszerek kozotti kapcsolatot és oOsszefiiggéseiket, valamint
bemutatja a szinharmdnidk tipusait és alkalmazasi lehet&ségeit interaktiv médon.[2]

5. dbra. Szinkeverés kiilonb6z6 szinrendszerekben RGB, CMY, HSB

Az oktatéprogramban szimulaljuk az additiv és a szubsztraktiv szinkeverést. A tanulé allithatja a
csuszkakon az egyes fényvetdk ,fényintenzitasat”, megfigyelheti a keletkez6 keverékszineket,
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azok szinkédjait. Itt lehetéségiink van a szinek eldallitdsdnak torvényszerliségeit bemutatni.
Interaktiv médon, szemléletessé tehetjiik a szinezet, telitettség, vildgossag paramétereket.

3. dbra. Szinharmonidk

A program bemutatja a harmonia kiilonb6z6 tipusait a monokrém, dikrém, trikém, tetrakrom és
polikrom szinharmoniat. és ezek alkalmazasat kiilonboz6 tertleteken.|[3]

3. dbra. Szinharmonidk alkalmazdsa

3. Osszefoglalas

A ,SZIN-Jaték” cim(i programelem a ,TAMOP-4.2.3-12/1/KONV-2012-0048 Tudomanyos
eredmények elismerése és disszemindcidja a Debreceni Egyetem kutatdi, oktat6i és hallgatoi
altal” cimi palyazat keretében valdsult meg.

A programelem a szinelméleti ismeretek feldolgozasat és alkoté alkalmazasat segiti
hagyomanyos eszkdzokkel, anyagokkal (festékkel, szines fényekkel) valamint interaktiv
szamitégépes szintani oktatoprogram alkalmazasaval.

Az Altalanos nevelési célokhoz tobbek ko6zott a kreativitds, a problémafelismeré és -megoldd
képesség, a képzelet, a képi gondolkodas, az izlés, a nyitottsag, az érzelmi élet gazdagitasaval

jarulunk hozza.
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