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Matematikai szoftverek alkalmazása a gyakorlati 

törésmechanikában 

Using Mathematical Software in Practical Fracture 

Mechanics 

KOCSIS I. 
Debreceni Egyetem Műszaki Kar, kocsisi@eng.unideb.hu  
Abstract. The use of mathematical software in teaching and learning mathematics (in classrooms and during preparation for tests and exams) has been intensively investigated by researchers of the teaching methodology of mathematics since professional software (in our days free online calculators and mobile applications, as well) are available for students. The role of mathematical software in engineering education where the ability to apply mathematical knowledge has to have priority is especially interesting. There are several points of view we can discuss this question from. In this paper a problem from the area of fraction mechanics is presented that appears in everyday work of mechanical engineers responsible for the condition monitoring of certain engineering structures e.g. pressure vessels and tubes. (Fracture mechanics is the field of mechanics concerned with the study of the propagation of cracks in materials.) Calculation methods and functions related to typical situations (geometry of the structure, type and value of the stress, shape, size and position of the crack) can be found in handbooks (and recently in online databases), however the calculations are extremely complicated and cannot be carried out without reliable mathematical software. Effective fraction analysis requires experience in use of mathematical software (also in analytical not only in numerical calculations) this is why the curriculum of one of mathematical or technical courses of the Mechanical Engineering training programme has to contain this topic. 
Bevezetés 

Ebben a dolgozatban egy speciális mérnöki területen felvetődő problémakör szemszögéből mutatjuk be a matematikai szoftvereknek a mérnöki matematika oktatásában betöltött szerepét. 
Gondolatmenetünk illeszkedik ahhoz az elvhez, mely az oktatási folyamat minden eleme esetén az adott szak képzési céljának való megfelelést és a hatékonyságot hangsúlyozza. A képzési célnak való megfelelés nem merülhet ki abban, hogy a képzési program formálisan eleget tesz a szak Képzési és képesítési követelményeinek, az egyes témakörök oktatóinak tisztában kell lennie azzal, hogy az általuk átadott ismeretek mennyiben járulnak hozzá ahhoz, hogy a végzett mérnökök kellőképpen fel legyenek készülve a szakmai munkájukra. Véleményünk szerint ez a természettudományi alapismeretek körébe tartozó tárgyak oktatóinak is kötelessége, ha nem elégszenek meg azzal, hogy a tárgyaik az „elkerülhetetlen rossz” kategóriába sorolódjanak.  
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A műszaki felsőoktatás lassan reagál az oktatási rendszerben az utóbbi évtizedben bekövetkezett jelentős változásokra: az oktatás eredményességének módszertani eszközökkel való javítása nem jön szóba, marad a körülményekre való hivatkozás. Véleményünk szerint a mérnökképzés keretében folyó matematikaoktatásban szükségesek az oktatás-módszertani megfontolások és újszerű módszerek alkalmazása, melyek egyrészt figyelembe veszik a felsőoktatásba kerülő hallgatók felkészültségét és szemléletmódját, valamint azt, hogy a matematika oktatása egy meghatározott kimenet elérését célzó folyamat része. 
A mérnöki szemléletmód és tevékenység egyik alapvető fogalmának, a hatékonyságnak a képzési folyamat szervezésében is meghatározónak kellene lennie. A teljes képzés hatékonysága általánosságban a későbbi mérnöki munka sikerességében mérhető, de a képzés részterületei (kurzusok, tárgycsoportok, gyakorlati munka) hatékonysága is vizsgálható az általuk előkészített tevékenységek sikerességén keresztül. Ez a megközelítés hozzájárulhat az alapozó tárgyak oktatása kapcsán felvetődő (főleg a motivációs) problémák megoldásához. 
A probléma alapú tanítás/tanulás módszerei jelentősen hozzájárulhatnak az eredményesség növeléséhez azáltal, hogy a motiváció a hallgató által választott szakterülethez kötődik. A probléma alapú tanítás a matematikát oktató részéről jelentős befektetést igényel, mivel a problémák felvetése gyakran ismeretlen területen, fogalomrendszerben történik, de a szerző tapasztalatai szerint a befektetés megtérül azáltal, hogy az új ismeretek birtokában más – az adott szak hallgatói számára érdekesebb – szemléletben képes feldolgozni a tananyagot, és ezzel növelni tudja a hallgatók együttműködési készségét. 
Ebben a dolgozatban egy konkrét műszaki oktatási szituáció tanulságai alapján fogalmazunk következtetéseket a matematika oktatására vonatkozóan. 
1. A számolás „kultúrája” 

A matematikai szoftverek használatának elemzésekor figyelembe kell venni a tanulók viszonyát a számolást segítő eszközökhöz, ami ma már nem függetleníthető a fiataloknak a hordozható számítógépekhez fűződő viszonyától. Lassan minden tanuló zsebében ott lesznek azok az „okos telefonnak” nevezett eszközök, melyekkel „mindent meg lehet csinálni”. Ez alapvetően meghatározza a fiatalok szemléletét, amit a tanulási folyamatban nem lehet figyelmen kívül hagyni. 
A matematika órákon – a tanulás, a gyakorlás és persze mindenekelőtt a számonkérések kapcsán – a „Lehet-e használni …”  kezdetű kérdések a gyakran ismétlődő kérdések közé tartoznak azóta, hogy rendelkezésre állnak a számolásokat leegyszerűsítő, megkönnyítő eszközök. A kérdés további része attól függ, hogy a kérdést az 1970-es, az 1980-as, az 1990-es, a 2000-es években vagy napjainkban teszik fel: … , táblázatot, logarlécet, egyszerű zsebszámológépet, bonyolultabb számítások (pl. függvény ábrázolására képes) zsebszámológépet, számítógépre telepített matematikai szoftvert, interneten elérhető matematikai szoftvert, …?  
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Mióta széles körben elterjedtek a zsebszámológépek kérdés, hogy azokat milyen módon célszerű felhasználni a matematika tanítása során, illetve a tanulók mikor és milyen feltételekkel használhatják a számítások elvégzésére.  
Az alapműveletek végrehajtására képes egyszerű számológépek és a függvénytáblázatok korában még viszonylag könnyen lehetett kezelni a kérdést, mivel az eszközök funkciója jól elkülönült. Amikor azonban a nagyobb tudású zsebszámológépek átvették a függvénytáblázatok szerepét is, a középiskolákban már nehezebb volt elhatárolni, hogy mit „szabad” és mit „nem szabad” számológéppel számolni, hiszen a legtöbb számolásban vannak számológép nélkül is elvégezhető (és célszerűen elvégzendő) számolási lépések és olyanok is, melyeket csak számológéppel lehet megkapni (pl. függvényértékek meghatározása). Ma a diákok jelentős része – előbb-utóbb a többsége – számológépként olyan eszközöket használ, melyek valójában a számítások jelentős részét – és akár teljes feladatmegoldásokat (pl. függvényelemzést) is – automatikusan elvégezni képes matematikai szoftverekkel ellátott számítógépek. Így a „mit szabad és mit nem szabad számológéppel számolni” kérdés megválaszolása még bonyolultabb. 
A mobil számítógépekkel együtt felnövő generációk számára nehezen érthető, hogy adott esetben miért nem használhatnak egy eszközt. A tapasztalatok szerint egyre kevésbé sikerül a középiskolákban elérni, hogy a számológép nélkül végezhető lépéseket fejben vagy írásban végezzék a tanulók, bármennyire is kívánatos lenne ez a tanulás eredményessége érdekében. A műszaki felsőoktatásba felvételt nyert hallgatók jelentős része számológép nélkül szinte semmit sem tud kiszámítani. Jó példa erre az a hallgató, aki a √8Y  értékéről úgy nyilatkozott, hogy azt csak számológéppel tudja kiszámítani, és nem tudja, hogy a √Y  mit jelent; számára a √8Y  kiszámítása ugyanúgy két gomb megnyomását jelenti, mint bármilyen egyéb függvényértéké. A szakértő szemlélő számára világos, hogy ez az értő tudás alacsony szintjének köszönhető, a diákok viszont úgy gondolkodnak erről, hogy „a lényeg az, hogy az eredmény kijöjjön”. Sok diák számára a számológép megnyugtató, és frusztráltnak érzi magát enélkül.  
A fentiekhez hasonló kérdések vetődnek fel a felsőbb matematika oktatásában a matematikai szoftverek alkalmazása kapcsán. Ennek a problémakörnek is jelentős irodalma van, melyben részben a „használjuk-e”, részben a „hogyan tudjuk hatékonyan használni” kérdésekre keresik a válaszokat. 
Ebben a dolgozatban nem lehet célunk a széleskörű módszertani áttekintés, csupán annak felvetése, hogy a matematikai szoftverek szerepéről alkotott elképzelést több, részben ellentmondó tényező befolyásolja. 
Az elméleti ismeretek elsajátítását támogató gyakorlás során nem célszerű a szoftverhasználat, mert a számolási lépések szerepének megértése a tanulás része, maga a számolás a tanulás, nem csak az a lényeg, hogy jöjjön ki az eredmény. A matematika tárgy óraszámait ismerve ennek az elvnek az alkalmazása gyakorlatilag azt jelenti, hogy a szoftverek tanítására nem jut idő. 
A műszaki példák megoldása során (a fent említett időbeli korlát miatt a műszaki tárgyak keretében) viszont kifejezetten hasznos a szoftverek bevonása, hogy a számolástechnikai 
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nehézségek ne akadályozzák a műszaki problémák megoldásának folyamatát. Persze felvetődik a kérdés, hogy előzmények, felkészítés nélkül a szoftverhasználat mennyire lehet eredményes. 
A matematikai ismeretek hasznosulása is sokféle. A matematika fogalomrendszerének, összefüggéseinek és módszereinek ismerete szükséges a műszaki tudományok tanulásához. Ebben a vonatkozásban a matematikai elméleti ismeretek értő birtoklása a meghatározó, a számolástechnikai felkészültség jelentőse kisebb, a műszaki tárgyak tanulása során ritkán fordul elő, hogy a számolások végrehajtása komoly technikai felkészültséget igényelne. 
A számítógépek fejlődősével jelentősen megváltozott a műszaki elmélet és a gyakorlat kapcsolata. Míg a megfelelő számítási kapacitás hiányában az elméleti eredmények közvetlen gyakorlati alkalmazására nem volt lehetőség, és így a mérnökök végeredményben tapasztalati alapon oldottak meg problémákat, addig ma már a mérnöki számításokra kifejlesztett szoftverek képesek a pontos számítások elvégzésére rövid idő alatt. A szerkezetek tervezésekor például a végeselemes szoftverek alkalmazásával elkerülhető a rendkívül költséges túlméretezés, amit korábban a „biztonság kedvéért” meg kellett tenni. A gyakorlati felhasználó számára ezek az alkalmazások fekete dobozként működnek abban az értelemben, hogy nem szükséges tisztában lenni a számolás részleteivel, „csak” helyesen kell megadni a bemenő adatokat, és helyesen kell értékelni az eredményt. 
Vannak azonban olyan problémakörök is, melyek bonyolult analitikus számítások végrehajtását igénylik a mindennapi mérnöki munkában. Az itt bemutatásra kerülő példa a törésmechanika témakörből származik, ami tipikus esete annak, hogy a bonyolult analitikus számításokra képes matematikai szoftverek elérhetősége alapvetően változtatta meg a gyakorlati munkát. Korábban a szakemberek hiába ismerték a mechanikai modellekből levezetett formulákat, az azokkal való számolás reménytelen volt, nem is törődtek vele. A nagyteljesítményű számítógépekkel együtt felnövő generációk azonban másképpen állnak a kérdéshez, hiszen megszokják, hogy mindenre van szoftver, így számukra teljesen mást jelent az, hogy mi a „nehéz”.  
Az ilyen fajta alkalmazási igény azt követeli, hogy a matematikai szoftverek  használatára fel kell készíteni a mérnökhallgatókat a képzés során. Bár a szakmai ismeretekben való igazi elmélyülés a mérnöki munka során történik meg, a matematikai eszközök használhatóságára való ráeszmélésnek ekkor már kevés az esélye. 
2. Törésmechanikai számítások 

A mérnöki szerkezetek biztonságának („teherbírásának”) megítélése szempontjából fontos szerepe van az anyagban jelenlévő repedéseknek. A repedések terjedésével foglalkozó törésmechanika első nagy fejlődési időszaka a repedés-diagnosztikai módszerek elterjedéséhez köthető. Repülőgép-szerkezetek, hajószerkezetek, egyéb ismétlődő terhelésnek kitett szerkezeti elemek, járműalkatrészek tönkremenetelét vizsgálva derült fény az ún. ridegtörés jelenségre. Nagyméretű acélszerkezetek (hidak, hajók, tartályok) rideg törése sok súlyos katasztrófa kiváltó oka volt főleg a huszadik század második harmadában. A jelenség lényege, hogy a szerkezeti 
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elem gyakorlatilag átmenet nélkül eltörik el, mert az anyagában minden esetben jelenlévő kezdeti repedések – a körülményektől függő minimális mértékű – ismétlődő terhelés hatására lassan, észrevétlenül növekednek a kritikus repedéshossz eléréséig, aztán a repedéshossz növekedése felgyorsul, és akár másodpercek alatt bekövetkezik a szerkezet törése. A befagyott vízfelületen kialakuló rianás is hasonlóan megy végbe. 
A törésmechanika fejlődése akkor gyorsult fel újra, amikor a számítógépek számolási kapacitása lehetővé tette a mechanikai modellekben felírt bonyolult egyenletek megoldását, például a végeselem-módszer alkalmazását. A gyakorlatban előforduló szerkezetekre, repedéstípusokra meghatározták a feszültséget a repedéscsúcs közelében leíró feszültségintenzitási tényezőt, valamint az anyagra jellemző törési szívósságot (lásd pl. [1-4]), melyek ismeretében számolható, hogy adott terhelés esetén mekkora a kritikus repedéshossz (a stabil és az instabil repedésterjedés határa), így a szerkezet adott állapota biztonsági szempontból minősíthető annak alapján, hogy az adott ] repedéshosszhoz tartozó ^ feszültségintenzitási tényező hogyan viszonyul a törési szívóssághoz ( _̂`). Ennek áttekintéséhez a ^ − ] függvény ábrázolása szükséges. 
A feszültségintenzitási tényező érzékenysége a repedéshossz változására szintén fontos jellemző [5], mivel a repedéshossz változása, illetve a leolvasás hibája ennek függvényében befolyásolja a biztonsági tényező (a ^ és a _̂` értékek viszonyának) értékét. A kvázistatikus repedésérzékenységi index értékét adott repedéshossz esetén a ^ − ] függvény deriváltja adja. 
A törési szívósság és az ehhez tartozó kritikus repedéshossz statikus terhelés esetén jellemzi a szerkezetet. Mivel a repedés hossza kisebb terhelés esetén is növekszik (stabilan mert a repedés felületének növekedése, valamint a repedéscsúcs közelében kialakuló képlékeny alakváltozás felemészti az energiát), a gyakorlat szempontjából fontos kérdés, hogy adott szerkezet adott repedése ciklikus terhelés mellett mikor (hány terhelési ciklus után) éri el kritikus repedéshosszat, mert a megengedett üzemeltetési idő ez alapján határozható meg [5-7]. A szerkezet geometriájától, terhelésétől és a repedés elhelyezkedésétől, méretétől függően ez lehet néhány nap, de több év is. Ez adja a pontos számítás jelentőségét: ha a repedés veszélyes, akkor a gyors beavatkozással súlyos károkat lehet megelőzni, ha viszont nem az, akkor a tovább üzemeltetéssel lehet a fölösleges veszteségeket elkerülni. A ciklusokban kifejezett élettartam a ^ − ] függvényt is tartalmazó függvény integrálásával számítható. A 3. részben bemutatunk egy számolást, amit húzó-lüktető terhelés esetén kell alkalmazni. 
3. A teljes falvastagságot elérő repedés belső nyomással és 

hajlítással terhelt cső falában 

A gyakorlati mérnöki számítások jellegét egy belső nyomással és hajlítással terhelt cső (jellemzően valamilyen folyadékot vagy gázt szállító vezeték része) példáján mutatjuk be, melynek falában a teljes falvastagságot elérő repedés van az 1. ábrának megfelelően. Az üzemeltetés során feltárt repedés esetén dönteni kell arról, hogy a repedés mennyire veszélyes, 
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a repedés hossza mennyire van közel a kritikus repedéshosszhoz, melynél az instabil repedésterjedés elindul. A geometriai és a terhelési adatok ismertek, a törési szívósság pedig anyagjellemző. 
Geometriai paraméterek: 
bc = 350ee, f = 8ee 
Terhelések: 
belső nyomás g = 64h]i, 
hajlító feszültség jk = 20lm] 
Törési szívósság: 

_̂` = 75lm]√e  1. ábra. A szerkezet geometriája és a repedés elhelyezkedése. 
A feszültség-intenzitási tényezőt leíró formula az adott geometriához, repedés jelleghez és elhelyezkedéshez kézikönyvekből (például [1-4]), újabban pedig online adatbázisokból kereshető ki. A vizsgált probléma esetén ez a függvény [1]: ^(]) = (nojp + ncjk) ∙ √s], ahol 

jp = g
tbobu vw − 1 

x = 0.3 
bo = bu + f2 

y = 1z12 ∙ (1 − xw){ ∙ | fbo 

} = ]bo 
~ = }2y 

� = 1 + s16 ∙ ~w − 0.0293 ∙ ~� 
� = √21f� �s − }√2 � + √2f�} 

n�o = 1 + � ∙ 1 − }f�}2}  
�o = �√8 ∙ �n�ow − 1� + s ∙ �w~ � ∙ }wy  

no = | �o2s] 

n�c = 1 + �4 ∙ �} + }f�w} − 1f�}� ∙ ���}}  
�c = �√8 ∙ �n�cw − 1� + s ∙ �w~ � ∙ }wy  

nc = | �c2s] 
A megadott formulákból képzett összetett ^ − ] függvénnyel kell a számításokat elvégezni. Az elsődleges feladat a kritikus repedéshossz kiszámítása, és ennek összevetése feltárt repedés hosszával. Ez a ^(]) = _̂`  egyenlet megoldását jelenti (fsolve(K=KIc,a) ). A vizsgált 
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esetben a megoldás: ]��u�u��� = 19.31ee. Az értékek áttekintéséhez nagy segítséget jelent a ^ függvény grafikonja (plot(K,a=0..a 1) ) (2. ábra). 
Mivel a törési szívósságot kísérleti úton állapítják meg, a használt érték a tényleges érték becslése. Ezért az aktuális repedéshossz megítélésékor célszerű figyelembe venni a törési szívósságra rendelkezésre álló érték bizonytalanságát például úgy, hogy meghatározzuk a kritikus repedéshosszat a 0.9 ∙ _̂` és 1.1 ∙ _̂`  törési szívósság értékek mellett. A példánkban ezek ]o.� = 15.84ee, ]c.c = 22.99ee. A kapott eredmények úgy fogalmazhatók meg, hogy a törési szívósság értékének „±10%-os” bizonytalanságát feltételezve a kritikus repedéshossz értéke a 15.84ee − 22.99ee tartományban van (2. ábra). 

 2. ábra. Feszültségintenzitási tényező – repedéshossz függvény (K-a) 

 3. ábra. Repedésérzékenységi index (a K-a függvény deriváltja) 
Az állapot megítélésének alapja a repedés hosszának mérése. A mérés pontossága függ a mérés körülményeitől, az emberi tényezőktől és a mérőeszköz pontosságától. Az, hogy a vizsgálat során 
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milyen mérési pontosságot kell biztosítani, a kvázistatikus repedésérzékenységi indextől függ [5-7], ami a ^ − ] függvény differenciálhányadosa („meredeksége”). Ha a repedésérzékenységi index értéke nagy, akkor kis mérési pontatlanság is jelentősen befolyásolja a feszülségintenzitási tényező számított értékét, így a megállapítás megbízhatósága jelentősen csökken, míg kis repedésérzékenységi index érték esetén a mérési pontosságnak kisebb a jelentősége. A – repedéshossztól függő – repedésérzékenységi indexet a �^/�] derivált függvény adja (dK:=diff(K,a); plot(dK,a=1..a 1) ) (3. ábra). 
A szerkezetek terhelése általában nem statikus, például egy olaj- vagy gázvezeték esetén az üzemi nyomás változik a szállított mennyiség (tömegáram) függvényében. A repedések viselkedése a dinamikus (ciklikus) terhelés esetén különbözik a kvázistatikus esettől. Míg a kvázistatikus esetben azt feltételezzük, hogy a repedés csak akkor „indul el”, ha fennáll a ^ >

_̂`, és akkor rögtön instabil módon terjed, addig a ciklikus terhelésnél (egy bizonyos ^ érték, illetve az ennek megfelelő ]�� repedéshossz felett) minden egyes ciklusban történik kis mértékű, stabil repedésterjedés. Ez a folyamat addig tart, míg a repedéshossz el nem éri a kritikus értéket, amikor elindul az instabil repedésterjedés.. A szerkezet ciklikus terhelés esetén a – ciklusszában kifejezett – maradék élettartammal jellemezhető (��). Lüktettő-húzó terhelés esetén 
�� = � 1� ∙ ^(])� �]���� ��¡¢

� £
 

ahol � és � anyagtól és geometriától függő jellemzők. 
A 4. ábra a számított maradék élettartamokat (N[i]:=int(1/(C*K^n), 

a=a[i]..a kritikus ) ) mutatja logaritmikus skálán (plot(Vector([a[1],…]), 

Vector([lgN[1],…]) ). 

 4. ábra. A ciklusszámban kifejezett élettartam (��) logaritmusa a repedéshossz (]) függvényében 
3. Következtetések 
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A matematikai szoftvereknek bevonásának módját a mérnökképzésbe számos tényező befolyásolja. Míg matematikai módszertani szempontból több érvet fel lehet hozni arra, hogy a szoftverek bevonása rossz hatással van a matematika elméletének elsajátítására, és az értő alkalmazására, addig a gyakorlat megköveteli a mérnököktől, hogy a rendelkezésre álló eszközöket tudják alkalmazni a problémák megoldására a gyakorlatban. 
A gépészmérnöki szak képzési programja nagyon korlátozott időkeretet biztosít a matematika tárgy számára, így az egymásnak ellentmondó igényeknek való megfelelés nehéz. 
A műszaki felsőoktatásban nem elterjedt az oktatás-módszertani kérdések felvetése, pedig az itt bemutatotthoz hasonló problémák kezelése ezt igényelné. 
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Differential equations in economics 

I. MOLNÁR, CS. KÉZI 
University of Debrecen, molnarildi.4@freemail.hu University of Debrecen, kezicsaba@science.unideb.hu 
Abstract. Applications of differential equations are used in modeling motion and change in all areas of 

science. The theory of differential equations has become an essential tool of economic analysis particularly 

since computer has become commonly available. It would be difficult to comprehend the contemporary 

literature of economics if one does not understand basic concepts (such as bifurcations and chaos) and 

results of modem theory of differential equations. 

Introduction  

A differential equation expresses the rate of change of the current state as a function of the current state. A simple illustration of this type of dependence is changes of the Gross Domestic Product (GDP) over time. Consider state Y Y Y Y of the GDP of the economy. The rate of change of the GDP is proportional to the current GDP ¥¦ (f) = � ∙  ¥(f), where t stands for time and ¥¦ (f)    the derivative of the function Y with respect to t. The growth rate of the GDP is ¥¦ /¥. 
1. Classical growth model 

Let ¥(f) the production, �(f) the investment, �(f) the consumption. Then 1) ¥(f) = �(f) + �(f)  ⟹  �(f) = ¥(f) − �(f) 2) ¥¦ (f) = ] ∙  �(f), (] > 0) 3) �(f) = ¥(f) − � ∙ ¥(f), (0 ≤ � ≤ 1) 4) �(f) = � ∙ ¥(f) . 
From the formulas 2) and 4) we get that c� ∙ ¥¦ (f) = � ∙ ¥(f) .This is a separable differential equation, which explicit form is ¥¦ (f) = ] ∙ � ∙ ¥(f). 
Solution. Let ℎ(¥) = ¥ and �(f) =  ] ∙ �. These functions fulfil the ª c« �¥ = ª ] ∙ � �f equation. 
If we integrate side by side, we get that 

ln ¥ =  ] ∙ � ∙ f + ln �. 
If we express Y,  

¥(f) = � ∙ ¬�∙�∙�    (� > 0). 
The solution is the exponential function. 
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If we have the Y(0)= ¥o initial value problem, we get that 

¥o = ¥(0) = � ∙ ¬o = �. 
Let � = ] ∙ � the rate of growth. Then the solution of the initial value problem is 

¥(f) = ¥o ∙ ¬�∙�∙� = ¥o ∙ ¬­∙�. 
2. A macroeconomics model 

®¬f �(f), �(f) ]�� ¥(f) consumption, investment and national income. For every t>0 let 1) �(f) + �(f) = ¥(f) 2) �(f) = ¯ ∙ �¦(f) 3) �(f) = ] ∙ ¥(f) + h 
where 0 < ] < 1 ]�� h, ¯ are positive constants. 
From the previously equations we get that 

¥¦ (f) = 1 − ]¯ ∙  ] ¥(f) − h¯ ∙  ] 
which is a first ordered linear differential equation.  If we derivate 3) equation, we get  

�¦(f) = ] ∙ ¥¦ (f). 
Substituting this formula to 2) equation, we get that 

�(f) = ¯ ∙  ] ∙ ¥¦ (f). 
Substitute the previous formula and 3) to the first equation, we get 

] ∙ ¥(f) + h + ¯ ∙  ] ∙ ¥¦ (f) = ¥(f) 
that is 

¯ ∙  ] ∙ ¥¦ (f) = ¥(f) − ] ∙ ¥(f) − h. 
Divided by ¯ ∙  ] side by side, we get that 

¥¦ (f) = 1¯ ∙  ] ¥(f) − ]¯ ∙  ] ∙ ¥(f) − h¯ ∙  ] = 1 − ]¯ ∙  ] ¥(f) − h¯ ∙  ]. 
Let ¥(0) = ¥o and we solve the initial value problem. In first step we solve the homogenous equation 

¥¦ (f) = 1 − ]¯ ∙  ] ¥(f). 
This is a separable differential equation thus 

� 1¥ �¥ = � 1 − ]¯ ∙  ] �f. 
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Calculate the integrals, we get 

ln ¥ = 1 − ]¯ ∙  ] ∙ f + ln �. 
That is the solution of the homogenous equation is 

¥±(f) = ¬c²��∙� ∙� ∙ �  (� > 0). 
In second step we calculate a particular solution of the inhomogeneous equation. To this let ¥³(f) = ¬´µ¶�∙¶ ∙� ∙ �(f). differentiating with respect to ‘t’, we get that 

¥¦³(f) = ¬c²��∙� ∙� ∙ 1 − ]¯ ∙ ] ∙ �(f) + ¬c²��∙� ∙� ∙ �¦(f). 
Substitute ¥³ to the inhomogenous equation: 

¬c²��∙� ∙� ∙ 1 − ]¯ ∙ ] ∙ �(f) + ¬c²��∙� ∙� ∙ �¦(f) = 1 − ]¯ ∙  ] ∙ ¬c²��∙� ∙� ∙ �(f) − h¯ ∙  ] 
that is 

�¦(f) = − h¯ ∙  ] ∙ ¬�²c�∙� ∙�. 
Integrate side by side 

�(f) = − h¯ ∙  ] ∙ ¬�²c�∙� ∙�] − 1¯ ∙ ] = − h¯ ∙  ] ∙ ¬�²c�∙� ∙� ∙ ¯ ∙ ]] − 1 = h1 − ] ∙ ¬�²c�∙� ∙�. 
Applying this formula 

¥³(f) = ¬c²��∙� ∙� ∙ h1 − ] ∙ ¬�²c�∙� ∙� = h1 − ]. 
The general solution of the differential equation is 

¥(f) = ¥±(f) + ¥³(f) = � ∙ ¬c²��∙� ∙� + h1 − ]. 
On the other hand ¥(0) = ¥o thus 

¥(0) = � + h1 − ] = ¥o 
that is 

� = ¥o − h1 − ]. 
The solution of the initial value problem 

¥(f) = �¥o − h1 − ]� � ∙ ¬c²��∙� ∙� + h1 − ]. 
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3. An application to the second ordered differential equation 

Let the price of the product at the time ’t’ is p(t), where p is a twice continuously differentiable function. Let D(p(t)) and S(p(t)) the demand and offer according to p.. Let 
¹ = ¹�g(f)� = 3g′′ − g′ − g + 25, 

and 
º = º�g(f)� = 4g»» + g′ + g + 5. 

Let furthet 
g(0) = 12, g»(0) = −2, ¹(0) = 20, º(0) = 20. 

If the demand and offer are equal, we can calculate the price-function p(t): 
3g′′ − g′ − g + 25 = 4g»» + g′ + g + 5 

that is 
g»» + 2g» + 2g = 20 

which is a second ordered linear differential equation. It is clear that 
g_(f) = 10 

is a particular solution of the equation. 
The characteristic equation of the homogenous differential equation is 

¼w + ¼ + 2 = 0. 
The solutions of this algebraic equation are 

¼c = −1 + � é� ¼w = −1 − �. 
The real and imaginary part of ¼c 

} = b¬(¼c) = −1, � = �e(¼c) = 1. 
The general solution of the homogenous equation is 

g±(f) = ½c ∙ ¬¾∙� ∙ ½¿�(� ∙ f) + ½w ∙ ¬¾∙� ∙ ���(� ∙ f)   (½c, ½w ∈  ℝ) 
thus the general solution of the inhomogeneous equation is 

g(f) = g±(f) + g_(f) = ½c ∙ ¬²� ∙ ½¿� f + ½w ∙ ¬²� ∙ ��� f + 10. 
It can be shown that the solution of the initial value problem is 

g(f) = 2 ∙ ¬²� ∙ ½¿� f + 10. 
Taking the limit 

lim�→Ã 2 ∙ ¬²� ∙ ½¿� f = lim�→Ã 2 ∙ ½¿� f¬�   ⟼  ∞ 
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 0 ⟻  − 2¬� ≤ 2 ∙ ½¿� f¬� ≤ 2¬�  ⟼ 0 

 

Figure 1.  function of the price 
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Application of the differential equations in case of 

traffic lights 

X. TÓTH, CS. KÉZI 
University of Debrecen, tothxeniaerzs@gmail.com     University of Debrecen, kezicsaba@science.unideb.hu        
Abstract. There are many real life applications of differential equations, which sometimes surprises high 

school calculus students. Many students don't understand why they are bothering to learn differential 

equations at all, but differential equations are very important parts of the study of economics, biology, 

engineering and physics. Since differential equations can describe exponential growth and decay, they are 

used to describe the half-lives of radioactive isotopes, the population growth of species or the change in 

investment return over time. Many of the equations that describe major concepts in physics. 

Introduction 

We use differential equations in many part of common life. We introduce a physical application, which used in the traffic. We calculate the brake distance and the brake time a of a defined velocity vehicle. By using these parameters, we analyse the optimal lighting time of a traffic light for the safe working.  
1. Description of the model 

1.1. Conditions of the model 

Equation for dynamic equilibrum of a moving vehicle: 

 ∑ F = FÉ + FÊ + FË + FÌ = 0 (1) 

where: FV: tractive force of the motor which is deliered to the wheel 

 FG: rolling resistance, which is caused by the shape-change of asphalt and wheel 

 FL: aerodynamic drag, it depends on the shape and the velocity of the vehicle 

 FE: resistance by the ascent.  

The interrelation of tractive force and resistances get over forces determines the dynamics of a 

vehicle. If a vehicle makes rectilinear motion with a stationary velocity the tractive force 

matches the sum of the resistances: FÉ = FÌËË. If FÉ < FÌËË the vehicle slows, otherwise it 

accelerates. In this case we examined on a horizontal surface move, so the ascent-caused 
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resistance could be ignored. The aerodynamic drag depends on the density of the air (Í), the 

drag coefficient  (½), the end-surface and its quality (A) and the square of its velocity (Îw): 

 FË = ρw ∙ c ∙ A ∙ vw. (2) 

Considering the moving of the vehicle, 
Ïw , c, Ð are constant we use the folloving sign to simplify 

the  further calculating: ¯Ñ = Ïw ∙ c ∙ Ð. 

Investigating  the rolling resistance, we can disregard the pressure of the tire and we only 

counted with the quality of the way by making the impending calculation. 

 FÊ = G ∙ μÊ (3) 

where �Ò  is the rolling resistance factor, and Ó = e ∙ � is the weight of the vehicle. Regarding 

the rolling resistance we singed it as ¯Ò  constant. 

1.2. Inscription and solution of the differential equation 

If we write down the equation of the motion, considering that the directions of the resistances are opposite with the tractive force, we get the following connextion. 
 m ∙ a = −FË − FÊ. (4) 
By using that the acceleration- time function is derivation of the velocity-time function, and replacing the resistances, we get: 

m ∙ v¦ (t) = −kË ∙ vw(t) − kÊ. 
Writing it to explicit form we get  
 v¦ (t) = (−kË ∙ vw(t) − kÊ) ∙ cÔ.  (5) 
This is a separated differential equation. Using the sings h(v) = −kË ∙ vw − kÊ and g(t) = cÔ  have to perform this relation: 
 ª cÕ(Ö) dv = ª g(t)dt. (6) 
Substituting the function in the right side and calculating the integration: 
 ª cÔ dt = ×ØÙÔ  (7) 
after replacing the left side, we completed the integration by using theª cÚÛØc = ]i½f�Ü form: 
 ª c²ÝÞ∙ÖÛ²Ýß dv = − cÝß ª c

�àáÞáß∙Ö�ÛØc dv = − cÝß ∙ âãÙ×ä�àáÞáß∙Ö�
àáÞáß

. (8) 
Using (7) and (8) express ’v’ we get the following form: 



Conference on Problem-based Learning  University of Debrecen in Engineering Education 10.10.2013  Faculty of Engineering 

− 1zkÊkË ∙ arctg å|kËkÊ ∙ væ = t + cm  
|kËkÊ ∙ v = tg ç− �t + cm � ∙ zkÊkËè 

 v(t) = tg é− t×ØÙÔ v ∙ zkÊkËê ∙ zÝßÝÞÝÞ  (9) 
Let us suppose starting velocity is v0.  Its mathematical meaning is that the initial value of the differential equations is v0=v(0). 
Beacuse of this: 
 vo = v(0) = tg é− t ÙÔv ∙ zkÊkËê ∙ zÝßÝÞÝÞ = tg ç− ÙzÝßÝÞÔ è ∙ zÝßÝÞÝÞ . (10) 
Expressing the ’c’, and replacing the v(t) to the function we got the solution of the Cauchy funciton: 

½ = ez¯Ò¯Ñ ]i½f� �− ¯Ñz¯Ò¯Ñ Îo�. 
If we substitute to (9) the value of  ’c’, we get 
 

Î(f) = f�
ëì
ìì
í−

î
ïðf + ez¯Ò¯Ñ ]i½f� �− ¯Ñz¯Ò¯Ñ Îo�

e ñ
òó ∙ z¯Ò¯Ñ

ôõ
õõ
ö ∙ z¯Ò¯Ñ¯Ñ . 

Using that the tangent and the arctangent functions are odd, and making the simplifications we get that: 
 v(t) = −tg ç ×Ô ∙ zkÊkË − arctg � ÝÞzÝßÝÞ vo�è ∙ zÝßÝÞÝÞ pai (11) 
With the aim of the determinding the braking time, we calculate tf  moment when v(t)=0 that is tf  fulfills the following equation 
 −tg ç×÷Ô ∙ zkÊkË − arctg � ÝÞzÝßÝÞ vo�è ∙ zÝßÝÞÝÞ = 0. 
Using that tgx=0 if x=0 and rearranging the equation we get: 

f� �tøm ∙ zkÊkË� = kËzkÊkË vo 
 tù = Ô∙âãÙ×âú� áÞ∙ûüzáßáÞ�

ÝßÝÞ zkÊkË. (12) 
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As the averaged distance of the vehicle is s¦(t) = v(t), that is 
 s = ª v×ýo (t)dt = ª −tg ç ×Ô ∙ zkÊkË − arctg � ÝÞzÝßÝÞ vo�è ∙ zÝßÝÞÝÞ dt.×ýo ¦  (13) 
Taking the constans term out and writing down the tangent function with the quotient of the sin and cos functions, we get the following form: 

� = − z¯Ò¯Ñ¯Ñ � sin þ fe ∙ z¯Ò¯Ñ − ]i½f� � ¯Ñz¯Ò¯Ñ Îo��
cos þ fe ∙ z¯Ò¯Ñ − ]i½f� � ¯Ñz¯Ò¯Ñ Îo���f.�÷

o  
The parity of the cos function, and using the  ª ø�(Ú)ø(Ú) = ��|�(Ü)| + ½ identity we get 

� = ez¯Ò¯Ñ¯Ñz¯Ò¯Ñ � − 1e ∙ z¯Ò¯Ñsin þ fe ∙ z¯Ò¯Ñ − ]i½f� � ¯Ñz¯Ò¯Ñ Îo��
cos þ fe ∙ z¯Ò¯Ñ − ]i½f� � ¯Ñz¯Ò¯Ñ Îo�� �f =�÷

o  

 = çÔÝÞ ln �cos ç ×Ô ∙ zkÊkË − arctg � ÝÞzÝßÝÞ vo�è�èo
×ý (14) 

substituting the  tù for the interrelation numbered (12) 
� = þē

Ñ �� �cos þ fe ∙ z¯Ò¯Ñ − ]i½f� � ¯Ñz¯Ò¯Ñ Îo����o

p∙âãÙ×âú� ��∙	üz�
���
�
�� z�
�� . 

By using the Newton-Leibniz Theorem  
s = ÔÝÞ ln ��cos

ëìì
ìí�∙
���
�� áÞ∙ûüzáßáÞ�

áßáÞ zÝßÝÞÔ ∙ zkÊkË − arctg � ÝÞzÝßÝÞ vo�
ôõõ
õö�� − ÔÝÞ ln �cos ç−arctg � ÝÞzÝßÝÞ vo�è�(15) 

and simplifying the relation 
s = ÔÝÞ ln �cos ç�arctg � ÝÞ∙ÖüzÝßÝÞ� − arctg � ÝÞzÝßÝÞ vo�   �è� − ÔÝÞ ln �cos ç−arctg � ÝÞzÝßÝÞ vo�è�, (16) 
using the arctgα ± arctgβ = arctg t �±�c∓��v trigonometrical identity we get the following relation: 
 s = ÔÝÞ ln �cos �arctg � ��∙�üz�
��² ��z�
��	ü

cØ ��∙�üz�
�� ��z�
��	ü�  �� − ÔÝÞ ln �cos ç−arctg � ÝÞzÝßÝÞ vo�è�. (17) 
Investigating the first term, completing the simplification and using that arctg0=1, and ln1=0 we get: 
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 ÔÝÞ ln|cos[(arctg(0))]| = ÔÝÞ ln|cos[0]| = ÔÝÞ ln|1| = 0. (18) 
We could simplify the numbered (17) and (18) terms with using  ½¿�wÜ = c��ÛÚØc trigonometrical identity (which is come from the  ���wÜ + ½¿�wÜ = 1 identity), to use this form, we have to square the cos function: 
 s = − ÔÝÞ ln �cos ç−arctg � ÝÞzÝßÝÞ vo�è�=− cw ÔÝÞ ln �cos ç−arctg � ÝÞzÝßÝÞ vo�è�w = 

= − 12 mkË ln �� 1
tg þarctg � kËzkÊkË vo��w + 1�

� = − 12 mkË ln 1
�zkËzkÊ vo�w + 1 = − 12 mkË ln 1kËvow + kÊkÊ

 
So we get the brake distance: 

�ø = 12 mkË ln ¯ÑÎow + kÊkÊ . 
1.3. Technical remark (other way to solution of the previous differential 

equation) 

We can make the integration by using the thesis of replacement integration, so we get a perspicuous form. 
From the numbered (13) equation we get this simplier form: 
 s = − zÝßzÝÞ ª tg �×∙zÝßÝÞ²âãÙ×ä�záÞzáßÖü�∙Ô

Ô  dt×ýo  (19) 
Introducing the 

! = f�
ëì
ìì
íf ∙ z¯Ò¯Ñ − ]i½f� �z¯Ñz¯Ò Îo� ∙ e

e ôõ
õõ
ö 

function, expressing ’t’ and derivating it according to u, we get: 
f = e ∙ ]i½f�! + ]i½f� �z¯Ñz¯Ò Îo� ∙ e

z¯Ò¯Ñ  
�f�! = e ∙ 11 + !w 1z¯Ò¯Ñ, 
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thus 
 s = − zÝßzÝÞ ª u ∙ "×"# = − zÝßzÝÞ

Ôw ∙ ª w#cØ#Û ∙ czÝßÝÞ du = − ÔÝÞ
cw ∙ ª w#cØ#Û du = − ÔÝÞ

cw ln(1 + uw).  (20) 
Using the definition of the ’u’, we get that 
 s = − cw ÔÝÞ ln(1 + uw) = − cw ÔÝÞ ln $1 + �tg å×∙zÝßÝÞ²âãÙ×ä�záÞzáßÖü�∙Ô

Ô æ w%. (21) 
2. Application to the traffic lights 

In case of the traffic lights, we meet the following problem: 
The driver is coming to the crossing -- supposing that he is moving with the speed limit --, he is seeing the light as green from this far, but as he is coming closer, it changes to yellow. Now, he has to decide to stop or -- because of the shortdistance and the high gear -- go on. The traffic light has to stay yellow long enough to drivers could get to the other side in safe. This reaching time depends on the reaction time (tr), the brake distance (sf) the width of the crossed road (sn), and the lenght of the car (sa). 

f&�p' = f� + �ø + �� + ��Îo = f� + 12 ēÑ �� ¯ÑÎow + ¯Ò¯Ò + �� + ��Îo . 
3. An example 

The previous general model we illustrate an a concrete example. Let the Mercedes Benz CLA Coupe. This vehicle has a perfect drag coefficient (c=0.23). It is well known that the gravitational acceleration is g= 9,81 m/s² and the rolling resistance factor (on asphalt) μÊ=  0,015. If we have the following datas 
Density of the air:   ρ = 1,2 kg/m³ 
The size of the end-surface: A= 2,21 m² 
The weight of the vehicle: m=1390 kg 
The lenght of the vehicle: sa=4,630 m 
Reaction time:  f� = 1� 
Two laned street width:  2∙3,5= 7 m 
The value of kL and kG by the precious datas: 
¯Ñ = Í2 ∙ c ∙ Ð = 1,2 2 ∙ 0,23 ∙ 2,21 = 0,30498 
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kÊ = FÊ = m ∙ g ∙ μÊ = 1390 ∙ 9,81 ∙ 0,015 = 204,5385. 
If the braking force is a constant, F=4000 [N] and the starting velocity is v(0)=13.8 [m/s] then the braking time 4.25 [s]. Thus if we want to stop safely the traffic light has to stay yellow about 5-5.5 [s]. 
The next function shows the braking length if we change the velocity of vehicle: 
 

  Figure 1. function of braking length 
References  
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Méréssel és számítógéppel támogatott mozgástani 

programelem középiskolásoknak és 

egyetemistáknak 

Program module supported by computer and 

measurement techniques for secondary school and 

university students 

G. Á. SZÍKI, R. NAGYNÉ KONDOR, A. VINCZÉNÉ VARGA 
University of Debrecen, szikig@eng.unideb.hu  University of Debrecen, rita@eng.unideb.hu University of Debrecen, vargaa@eng.unideb.hu 
We recommend our program module “The Language of Mechanics”, which is supported by TAMOP -4.2.3-12/1/KONV-2012-0048, mainly to graduating secondary school students, but it can be also a useful practical supplementary help for college and university students for the subject Dynamics. The main aim of the program module can be summed up in two simple questions: Can the motion of a body be really calculated with the help of a piece of paper, pencil and maybe a calculator? If yes, to what extent do the calculated values correspond to the measured ones? We realize the above mentioned aim by studying a rolling motion problem theoretically and experimentally. For the experiments we apply a set-up which has been recently developed at the Faculty of Engineering University of Debrecen. 
Bevezetés 

A „TÁMOP-4.2.3-12/1/KONV-2012-0048 Tudományos eredmények elismerése és disszeminációja a Debreceni Egyetem kutatói, oktatói és hallgatói által” című pályázat keretében megvalósuló „Mechanikus beszéd” című programelemet tizenkettedik osztályos középiskolás diákoknak ajánljuk, de hasznos gyakorlati kiegészítést nyújt egyetemistáknak és főiskolásoknak is a Mechanika azon belül a Mozgástan című tantárgyhoz. Emellett hasznos ötleteket meríthetnek belőle a középiskolás fizika tanárok, valamint a Mozgástan című tantárgy oktatói is.  
1. A programelem célkitűzései 

A programelem célkitűzése néhány egyszerű kérdésben megközelítve az alábbi:  Vajon egy papír, ceruza esetleg egy számítógép segítségével tényleg előre ki tudjuk számítani egy test mozgását? Ha igen, akkor mennyire egyeznek a számolt értékek a gyakorlatban 
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tapasztaltakkal? Ha fizikusok előre ki tudják számolni egy meteorit, vagy üstökös mozgását, akkor miért ne sikerülne nekünk is hétköznapi testek eset
A programelem keretében a gördülő mozgással foglalkozunk, ezen a konkrét mozgástípuson keresztül valósítjuk meg a fenti célkitűzést. Egész pontosan egy lejtőre helyezett tömör, homogén henger mozgását vizsgáljuk különböző kísérleti paraméterek (lejtő hhossza, a henger gördülési ellenállása) mellett. Minden esetben a gördülési időt határozzuk meg, először mérés, majd számítás útján, végül a kapott értékeket összehasonlítjuk.
A méréseket a DE MK Műszaki Alaptárgyi Tanszékén készült kísérletivalósítjuk meg. 

1. ábra: Fényképek a kísérleti eszközről
Az eszköz egy alumínium idomokból felépített lejtő, amelyen egy tömör, rozsdamentes acélhenger 

gördül. A lejtő hossza és hajlásszöge, valamint a henger gördülési ellenállása 

húzható polifoam cső segítségével 

jelentősen megnöveli, így alkalmazásával a gördülési idő jelentősen 

2. A programelem bemutatása

Mind a számításokat, mind a méréseket végrehajtásának lépései a következők:Elméleti ismeretek áttekintése 
• Az oktatók a gördülő mozgással kapcsolatos kérdéseket vetnek fel, majd a diákokkal közösen megválaszolják azokat, ezáltal megközelít
• Egy PowerPointos diasor segítségével (áttekintik a gördülési idő számításához szükséges mechanikai, matematikai (trigonometriai, egyenletrendszerA gördülési idő meghatározása Adatok: s= 1,38m, α=3° (5 db m
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tapasztaltakkal? Ha fizikusok előre ki tudják számolni egy meteorit, vagy üstökös mozgását, akkor miért ne sikerülne nekünk is hétköznapi testek esetén? 
A programelem keretében a gördülő mozgással foglalkozunk, ezen a konkrét mozgástípuson keresztül valósítjuk meg a fenti célkitűzést. Egész pontosan egy lejtőre helyezett tömör, homogén henger mozgását vizsgáljuk különböző kísérleti paraméterek (lejtő hhossza, a henger gördülési ellenállása) mellett. Minden esetben a gördülési időt határozzuk meg, először mérés, majd számítás útján, végül a kapott értékeket összehasonlítjuk.
A méréseket a DE MK Műszaki Alaptárgyi Tanszékén készült kísérleti 

1. ábra: Fényképek a kísérleti eszközről 
Az eszköz egy alumínium idomokból felépített lejtő, amelyen egy tömör, rozsdamentes acélhenger 

gördül. A lejtő hossza és hajlásszöge, valamint a henger gördülési ellenállása 

húzható polifoam cső segítségével – változtatható. (A polifoam cső a henger gördülési ellenállását 

jelentősen megnöveli, így alkalmazásával a gördülési idő jelentősen megnő.) 

2. A programelem bemutatása 

Mind a számításokat, mind a méréseket a diákok végzik el oktatói irányítással. A programelem végrehajtásának lépései a következők:  
Az oktatók a gördülő mozgással kapcsolatos kérdéseket vetnek fel, majd a diákokkal közösen megválaszolják azokat, ezáltal megközelítve a problémát. Egy PowerPointos diasor segítségével (2. ábra) az oktatók és a diákok közösen áttekintik a gördülési idő számításához szükséges mechanikai, matematikai (trigonometriai, egyenletrendszer-megoldási) és számítástechnikai ismereteket.A gördülési idő meghatározása - nincs polifoam cső a hengeren  =3° (5 db mérés) 
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tapasztaltakkal? Ha fizikusok előre ki tudják számolni egy meteorit, vagy üstökös mozgását, 
A programelem keretében a gördülő mozgással foglalkozunk, ezen a konkrét mozgástípuson keresztül valósítjuk meg a fenti célkitűzést. Egész pontosan egy lejtőre helyezett tömör, homogén henger mozgását vizsgáljuk különböző kísérleti paraméterek (lejtő hajlásszöge és hossza, a henger gördülési ellenállása) mellett. Minden esetben a gördülési időt határozzuk meg, először mérés, majd számítás útján, végül a kapott értékeket összehasonlítjuk. 

 eszközön (1. ábra) 

 

Az eszköz egy alumínium idomokból felépített lejtő, amelyen egy tömör, rozsdamentes acélhenger 

gördül. A lejtő hossza és hajlásszöge, valamint a henger gördülési ellenállása – egy a hengerre 

(A polifoam cső a henger gördülési ellenállását 

a diákok végzik el oktatói irányítással. A programelem 

Az oktatók a gördülő mozgással kapcsolatos kérdéseket vetnek fel, majd a diákokkal  ) az oktatók és a diákok közösen áttekintik a gördülési idő számításához szükséges mechanikai, matematikai megoldási) és számítástechnikai ismereteket. 
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• A hallgatók lemérik a gördülési időt, majd a GeoGebra [1] programmal kiszámítják a mért adatok átlagértékét és szórását. 
• A hallgatók a GeoGebra programmal kiszámítják a gördülési időt, majd a számított és mért értékeket összehasonlítják. A gördülési ellenállás karjának meghatározás - polifoam cső a hengeren Adatok: s=1,364m, α=3° (5 db mérés) 
• A hallgatók lemérik a gördülési időt, majd a GeoGebra programmal kiszámítják a mért adatok átlagértékét és szórását. 
• A hallgatók az Excel [2,3,4] program segítségével kiszámítják a rozsdamentes acélhengerből és polifoam csőből álló rendszer tehetetlenségi nyomatékát, majd a mért gördülési idő ismeretében a gördülési ellenállás karját (3. ábra, G és J oszlopok). (A fenti két adat ismeretében a gördülési idő már bármely szögérték és lejtőhossz esetén számítható.) A gördülési idő meghatározása - polifoam cső a hengeren Adatok: s= 1,364m, α=5° (5 db mérés) 
• A hallgatók lemérik a gördülési időt, majd a GeoGebra programmal kiszámítják a mért adatok átlagértékét és szórását. 
• A hallgatók az Excel program segítségével – a tehetetlenségi nyomaték és a gördülési ellenállás karjának ismeretében – kiszámítják a gördülési időt (3. ábra, L oszlop), majd összehasonlítják azt a mért értékkel. További ismeretek és érdekességek közlése. Kötetlen beszélgetés  
Az oktatók a gördüléshez kapcsolódó további, kiegészítő információkat, érdekességeket ismertetnek meg a hallgatókkal (pl.: ciklois görbék fogalma és szerepük a gördülő mozgás leírásában, brachisztochron probléma) majd kötetlen beszélgetést folytatnak a diákokkal a mechanikáról és általában a mérnökképzésről. 

 2. ábra: Diák a PowerPointos diasorból 
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 3. ábra: Excel táblázat a tehetetlenségi nyomaték, a gördülési ellenállási kar, valamint a gördülési idő számításához 
A kísérletek és számítások során a diákok munkáját nyomtatott segédanyagok is segítik (4. ábra). 

 4. ábra: Nyomtatott hallgatói segédanyagok 

Gördülési ellenállási kar és tehetetlenségi nyomaték számítása – polifoam cső a hengeren 
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3. Összefoglalás 

A „Mechanikus beszéd” című programelem a „TÁMOP-4.2.3-12/1/KONV-2012-0048 Tudományos eredmények elismerése és disszeminációja a Debreceni Egyetem kutatói, oktatói és hallgatói által” című pályázat keretében valósult meg. 
A programelem a gördülő mozgás vizsgálatán keresztül bemutatja, hogy a mechanika, matematika és számítástechnika eszközeinek összehangolt alkalmazásával hogyan számítható ki egy fizikai test mozgása, majd a kísérleti megvalósításon keresztül bemutatja az elmélet és a valóság kapcsolatát. A háromórás interaktív foglalkozás során a középiskolás diákok betekintést nyernek a Newtoni mechanika világába, és hasznos gyakorlati és elméleti ismeretekre tesznek szert. Személyesen tapasztalják meg, hogy egy gyakorlati probléma megoldása hogyan kivitelezhető több tudományterület eszközeinek együttes, összehangolt alkalmazásával. 
Felhasznált irodalom 

[4] Álló G., Táblázatkezelés Felsőfokon, Műszaki Könyvkiadó Kft, 2002. 
[5] Bártfai B., Táblázatkezelési gyakorlatok, BBS-Info Kft, 2003.  
[6] GeoGebraWiki International http://www.geogebra.org/en/wiki/index.php/Main_Page 
[7] Kovalcsikné Pintér O., Az Excel függvényei A-tól Z-ig, ComputerBooks Kiadói Szolgáltató és Kereskedő Kft, 2000. 
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Az SVM módszer alkalmazása egy műszaki 

optimalizációs problémában  

Applying the SVM method in an engineering 

optimization problem  

A. VÁMOSI 
University of Debrecen, (vamosi.attila@eng.unideb.hu)  
Abstract. Machine learning is applied in many areas of science to problem solving. Although the method is appropriate to solve engineering problems as well, applications in technical areas have not yet been widely adopted. 
In this work the SVM (Support Vector Machine) method has been chosen from several options to investigate a specific engineering problem. This work aims to demonstrate that SVM with a structured set of training data and correct parameter selection is suitable for solving engineering problems. 
In this example the original problem is traced back to regression. First generate the set of training data, then determine the hyper-parameters using grid search and n-fold cross-validation. Finally, finding the input values belonging to minimum of the resulting function we get the solution of the original problem. 
Bevezetés 

A gépi tanulás célja, egy olyan algoritmus fejlesztése, mely működése során a szerzett tapasztalatai alapján képes javítani saját hatékonyságát. Az SVM (Support Vector Machine – tartóvektor „gép”) egy olyan módszer, mely a statisztikai tanulást használja fel úgy, hogy a döntési határt tanulópontok egy részhalmazával (tartóvektorokkal) reprezentálja. Az SVM jól használható osztályozásra (szeparálásra) és függvényközelítésre (regresszióra). Gyakorlati alkalmazásának hatékonysága abban rejlik, hogy számos probléma megoldása visszavezethető erre a két feladatra. 
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1. Az SVM módszer elmélete 

1.1. Osztályozás 

Osztályozás lényege, hogy adott entitásokat (valamely dolog tulajdonságainak az összessége) előre rögzített számú kategóriákba (osztályokba) soroljunk. Az osztályozási célfeladat olyan modell készítése, mely a tanuló-adatbázis alapján képes a tanítás során nem látott entitásokat is jól osztályozni. Az entitások leírása valós vektorokkal (jellemzővektorokkal) történik. A tanuló-adatbázis jellemzővektorokból és a hozzájuk tartozó helyes osztálycímkékből (az adott entitás melyik osztályba tartozik) áll: /(0u, 1u)2    , ahol � = 1, 2, … , �  és 1u = +1, −1 

 

1.1.1. Lineáris osztályozás 

Egy mintát többféleképpen szeparálhatunk. Lineáris osztályozás esetén a különböző osztályokat egy hipersík választja el egymástól. A hipersík egyenlete: 340 + h = 0 

A pontot aszerint osztályozzuk, hogy a hipersík melyik oldalán helyezkedik el. Azok az xxxx-ek melyekre 340 + h > 0 

az egyik osztályba, melyekre 340 + h < 0 

a másik osztályba tartoznak. 
Tanítás során a tanuló-adatbázis pontjait szétválasztó egyenest (hipersíkot) keressük. Számos lehetőség közül keressük a legjobbat (az optimális hipersíkot), melynek a lehető legnagyobb a margója. Cél, hogy a szeparáló hipersík távol legyen a mintapontoktól, mert a nagy margóval rendelkező döntési határok jobban általánosítanak. 
Margó alatt az elválasztó hipersíkkal párhuzamos síkokkal megadott olyan térrészt értjük, amely nem tartalmaz tanulópontokat. A margók egyenletei: 340 + h = 1     és     340 + h = −1 

Azokra a pontokra, melyek a margót határoló síkokra esnek (tartóvektorok, support vectors) fennáll, hogy: 340(Ø) + h = 1     és     340(²) + h = −1 
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Ezek segítségével leírható a margó szélessége: 

l = �0(Ø) − 0(²)� ∙ 5 = �0(Ø) − 0(²)� ∙ 3‖3‖ = 2‖3‖ 

Ezt kell maximalizálni úgy, hogy az yi = +1 osztálycímkéjű tanulópontokra 340u + h ≥ 1 

és az yi = –1 osztálycímkéjű tanulópontokra 
 340u + h ≤ −1 

legyen. Azaz a duális feladat: 
min 12 ‖3‖w    az      1u(340u + h) ≥ 1    feltétel mellett 

A duális feladat egy kvadratikus programozási feladat lineáris feltételekkel. Lagrange szorzók bevezetése és az eredeti változók szerinti parciális deriváltak nullává tétele után a feladat eredménye: 
3 = 8 }u1u0u

�
u9c    

A Karush-Kuhn-Tucker feltétel alapján: 
}u(1u(340u + h) − 1) = 0 

 vagyis csak a tartóvektorok esetén lesz }u ≠ 0, így az eredmény: 
3 = 8 }u1u0u;∈<É    

b  pedig az alábbi egyenletből számítható: 1u(340u + h) − 1 = 0 
 Az optimális hipersík egyenlete lineáris osztályozás esetén: 

�(0) = 340 + b = 8 }u1u0u40 + h;∈<É    
Ha felépítettük az optimális hipersíkot, akkor egy tetszőleges z pontot az alábbi döntésfüggvénnyel osztályozhatunk:  

�(=, α) = sgn �8 }u1u0u4= + h;∈<É �    
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1.1.2. Lineárisan nem szeparálható eset 

Előfordulnak olyan halmazok, melyek lineárisan nem szeparálhatóak. A műszaki problémák többsége éppen ilyen lesz. Ebben az esetben számolnunk kell a hibával. 
Az osztályok közötti elválasztás margóját lágynak (soft margin) nevezzük, ha egy vagy több tanulópont megsérti az 1u(340u + h) ≥ 1 egyenlőtlenséget. Tehát lesznek olyan i  indexek, hogy 
• az xxxxi tanulópont jó oldalon van, de a két margó közé esik, illetve  
• az xxxxi tanulópont az elválasztó sík nem megfelelő oldalára esik. 
Az ilyen feladatok megoldásához vezessük be a nemnegatív /xu2u9c>  segédváltozókat (gyengítő változók, slack variables), és csak az 1u(340u + h) ≥ 1 − xu egyenlőtlenség teljesülését követeljük meg. Viszont ezt a hibát is korlátozni kell, tehát ∑ xu>u9o  legyen a lehető legkisebb. Azaz ebben az esetben az 

12 ‖3‖w + � 8 xu
�

u9o  

duális feladat minimalizálandó a fenti feltételek teljesülése mellett. Az első tagot a jó hipersík keresése, a második tagot a tapasztalati hiba kontrollálása miatt minimalizáljuk. A szabadon választható C >0 paraméterrel e két tényező közötti viszony szabályozható. Ha a C  kicsi, akkor a margó maximalizálása kap nagyobb hangsúlyt, ebben az esetben a modell jól általánosít, de a hiba nagyobb mértékű lesz. Ha a C  nagy, akkor a hiba mértékét csökkentjük, de a margó nem lesz maximális, így a modell általánosító képessége rosszabb. 
A hibák kiküszöbölése érdekében az SVM a mintaelemeket egy ?: @' → @A (g ≪ C) nem lineáris függvénnyel egy magasabb dimenziós térbe, az úgynevezett tulajdonságok terébe (feature space) képezi, és ott illeszti az optimális hipersíkot. Ehhez nincs szükség explicit módon a tulajdonságok terére, csak az azon értelmezett belső szorzatra. 
A hipersík egyenlete kifejezhető a tanulópontok belső szorzataival és az optimalizáció során is csak a belső szorzatokat használjuk. Mivel a jellemzőtér dimenziója nagyon nagy, akár végtelen is lehet, a feladat megoldása túl bonyolulttá válik. Az ún. Kernel trükk segítségével viszont ezek a feladatok is egyszerűen, lineárisan megoldhatók. Ehhez csupán még egy transzformációra van szükség, és a feladatot nem a tulajdonságok terében, hanem a kernel térben oldjuk meg. A tulajdonságok tere és a kernel tér között a skalár szorzat teremti meg a kapcsolatot. Minden olyan K(xxxxi,xxxxj) magfüggvényhez, amely kielégíti a Mercer-tétel feltételeit, létezik egy tulajdonságtér, melyben ez a mag generálja a belső szorzatot. Vagyis a kernel tér definiálásához választanunk kell egy megfelelő kernel függvényt.  
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Az osztályozáshoz használható magfüggvények például: 
• lineáris kernel:  

^(0, 0u) = 〈0, 0u〉 
• polinomiális kernel:  

^(0, 0u) = (〈0, 0u〉 + 1)F 
• RBF (Radial Basis Function) kernel: 

^(0, 0u) = exp(−γ‖0 − 0u‖w) 
• kétszintű kernel: ^(0, 0u) = tanh(βo〈0, 0u〉 + βc) 
Így a kernel trükk segítségével egy tetszőleges z pontot az alábbi döntésfüggvénnyel osztályozhatunk:  

�(=, α) = sgn �8 }u1uK(=, 0u) + h;∈<É �    
 
1.2. Függvényközelítés (Regresszió) 

Az SVM használható függvényközelítésre (regresszióra) is. Az osztályozás és a regresszió között a kapcsolatot egy un. ε érzéketlenségi sávval rendelkező abszolutérték hibafüggvény (ε-insensitive loss function) alkalmazása adja.  
®I(1) = J0                              ha |� − 1(0)| < K|� − 1(0)| − K      egyébként              L     A regresszió megfeleltethető egy olyan osztályozási feladatnak, ahol a helyes osztályozás hibája 0, míg a rosszul osztályozott pontokat gyengítő változók bevezetésével büntetjük. 

A minimalizálandó költségfüggvény így: 
12 ‖3‖w + � 8(xu + xu»)�

u9o  

A duális feladat végrehajtása után kapott eredmény alapján egy tetszőleges z pont értékét az alábbi függvénnyel határozhatjuk meg:  
1(=) = 8(}u − }u»)K(=, 0u) + h;∈<É  

 Regressziós feladatnál a margó szerepét lényegében az ε hiperparaméter alkalmazása veszi át. A margó szélessége maga az ε paraméter. Minél nagyobb ε értéke, annál simább megoldást kapunk. Minél kisebb ez az érzéketlenségi sáv, annál pontosabban próbálja a modell a 
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tanulópontokra illeszteni a megoldást. Ez arra készteti a modellt, hogy minden pontot jól (kis hibával) közelítsen, ami túltanuláshoz vezethet. A megoldás hibája és komplexitása közötti kapcsolatot regressziónál is a C paraméter adja meg, éppen ezért ε és C értékét összehangoltan kell megválasztani. 
 
2. A feladat bemutatása 

2.1. A rugókarakterisztika 

Az iparban használatos gumialkatrészeknek számos feltételt kell teljesíteniük ahhoz, hogy feladatukat megfelelően el tudják látni. Egyik ilyen feltétel, hogy rugókarakterisztikájuknak (adott nyomóerőhöz tartozó összenyomódás mértékét ábrázoló grafikon) egy előírt alakot kell felvennie az adott terhelések hatására. Egy ilyen karakterisztika látható az 1. ábrán. 

 1. ábra, Előírt rugókarakterisztika 
Ez a karakterisztika függ a gumialkatrész geometriai méreteitől. Az azonos alakú, de különböző méretű gumialkatrészek azonos terhelés hatására különböző méretű alakváltozást (összenyomódást) szenvednek el. Annak meghatározása, hogy egy adott rugókarakterisztika milyen geometriai méretekkel érhető el egy optimalizálási feladatnak tekinthető. 
2.2. A gumialkatrész geometriája 

Példánkban egy hengeres kialakítású gumialkatrész méreteit szeretnénk optimalizálni. Az alkatrész magassága (h) és külső átmérője (D) adott. A belső átmérő (d), és a külső palást felső és alsó eltérése a külső átmérőhöz képest (ff és fa) változó, ezeket kell optimalizálnunk.  
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 2. ábra, A gumirugó geometriája 
A három optimalizálandó paraméter – a gyártástechnológia pontosságából adódóan – a belső átmérő esetén 2 mm-es, a külső palást eltérések esetén 1 mm-es lépcsőkben az alábbi tartományból választandó: 
• 16 mm ≤ d ≤ 24 mm 
• –5 mm ≤ ff ≤ 5 mm 
• –5 mm ≤ fa ≤ 5 mm Fentiekből adódóan az összes lehetséges variáció 605 darab különböző méretű gumialkatrészt eredményez. Ezek közül keressük azt az egyet, melynek rugókarakterisztikája a legjobban megközelíti az előírt karakterisztika alakját. 
 
2.3. A probléma visszavezetése 

Az optimalizálási feladat során elérendő célunk az előírt és az adott geometriához tartozó karakterisztikák közötti terület minimalizálása. A karakterisztika görbéje alatti terület a nyomóerő által a gumialkatrészen végzett munka nagysága. A két görbe közötti terület az ún. munkakülönbség (ΔW).  Ezt kell minimalizálnunk. 
A feladat megoldásához az eredeti problémát visszavezetjük regressziós feladatra, mivel az 1.2. pont alapján már láttuk, hogy regressziós feladat megoldható SVM használatával. 
A feladat megoldását arra alapozzuk, hogy a geometriai méretek (mint bemeneti értékek) és a munkakülönbségek (mint kimeneti értékek) között kell lenni valamilyen összefüggésnek, és egy ezt az összefüggést leíró függvénynek. Az SVM módszerrel ezt a függvényt fogjuk megkeresni. 
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 3. ábra, A munkakülönbség (ΔW) 
3. Az alkalmazás 

A módszer alkalmazásának négy lépése lesz: 
• 1. lépés: a tanulópontok kiválasztása és a tanulóhalmaz előállítása 
• 2. lépés: kernel függvény kiválasztása és a hiperparaméterek meghatározása 
• 3. lépés: az optimális hiperparaméterek keresése 
• 4. lépés: a regresszió végrehajtása az optimális hiperparaméterekkel  
3.1. Tanulópontok kiválasztása 

Egy adott geometriához tartozó karakterisztika végeselem módszer (Finite Element Method, FEM) használatával [2] meghatározható. Ez az eljárás rendkívül időigényes, az összes elemre történő kiszámítása rengeteg időt venne igénybe. A ráfordított idő nagymértékben csökkenthető az SVM módszer használatával.  
Az SVM működéséhez szükségünk van tanulópontokra. Ebben a példában 27 tanulópontot választunk ki úgy, hogy mindhárom optimalizálandó változónak vesszük a szélsőértékeit és a középértékeiket. Így 3x3x3, azaz 27 különböző geometria adódik. Csak ezekre a geometriákra határozzuk meg a karakterisztikákat és számítjuk ki a munkakülönbségeket.    
A 27 tanulópontból jön létre a tanulóhalmaz, mely lényegében 27 darab 3 elemű vektort és a hozzájuk tartozó munkakülönbség értékeket tartalmazza: /(xxxxi, yi)2, ahol i = 1, ... , 27 és yi az i-edik paraméterhármashoz meghatározott munkakülönbség. 
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 4. ábra, A tanulópontok és az optimalizálási tartomány 
 
3.2. Kernel függvény és a hipermaraméterek 

Mivel a probléma lineárisan nem szeparálható eset, így az osztályozást az ún. kernel-trükk alkalmazásával a kernel térben fogjuk végrehajtani. Ehhez választanunk kell egy alkalmas kernel függvényt, mely megadja a kernel térben értelmezett belső szorzatokat.  
Ebben a példában a leggyakrabban használt RBF kernelt alkalmazzuk. A radiális bázis függvénynek egy paramétere lesz (γ), ez lesz az egyik hiperparaméter. Mivel regressziós feladatot oldunk meg, így használunk egy ε–érzékenységű veszteség függvényt (ε  lesz a második hiperparaméter) és a nem lineáris probléma miatt azzal, hogy megengedjük a gyengített margó használatát bevezetünk egy C  büntető paramétert is (ez lesz a harmadik hiperparaméter).  
Tehát három hiperparamétert fogunk használni: 
• ε – érzéketlenségi tényező (a regresszió pontosságához) 
• γ – Kernel paraméter (a belső szorzatok meghatározásához) 
• C – büntető paraméter (a gyengítő változók hatásának szabályozásához) 
3.3. Az optimális hipermaraméterek keresése 

A hiperparaméterek megválasztása nagymértékben befolyásolja az SVM működésének pontosságát. A nem megfelelő paraméterválasztás könnyen a túltanulás problémájához vezethet. Túltanulás vagy túlillesztés esetén az eredményül kapott függvény látszólag hibátlanul vagy minimális hibával illeszkedik a tanulópontokra, de éppen ez adja a hibáját. Az ilyen függvények túl nagy mértékben függnek a tanulópontoktól, vagyis ott tökéletes az illesztés, de a többi pontban nagy eltérések adódhatnak. 
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 5. ábra, A túltanulás veszélye 
Az 5. ábrán láthatunk egy példát a túltanulásra. Az eredeti függvény a sötétkékkel jelölt egyenes. Az erről a függvényről levett sötétkék színű tanulópontokra illesztünk egy regressziós függvényt. A piros színű görbe egy túltanulással kapott függvény, mely a sötétkék tanulópontokban hibátlanul adja az eredményt, de a világoskék tesztpontokban (melyeket nem használtunk fel a tanításhoz) nagymértékű hibát generál.  
A túltanulás veszélyének esélyét már a hiperparaméterek keresése közben is csökkenthetjük. Az ún. keresztvalidáció alkalmazásával a paramétereket teszteljük úgy, hogy a tanulópontokat több részhalmazra osztjuk és a tanításra nem használjuk fel mindegyik részhalmazt, hanem egyet félreteszünk és azokat a pontokat tesztelésre használjuk. A paraméterek ellenőrzését annyiszor hajtuk végre, ahány részhalmazra osztottuk a tanulópontokat úgy, hogy mindig egy másik halmazt hagyunk ki a tanításból. Így végül az összes tanulópont fel lesz használva tanításra és tesztelésre is. 
A hiperparamétereket egy előre definiált tartományban keressük. A kiválasztott paraméterpárokkal végrehajtjuk a keresztvalidációt és vizsgáljuk a tesztpontokra kapott hibákat. A grid search-nek nevezett eljárás végén megkapjuk az adott tartományban legkisebb hibával működő paramétereket, ezek lesznek az optimális hiperparaméterek. 
Ebben a példában a hiperparamétereket az alábbi tartományokban keressük: 
• ε – érzéketlenségi tényezőt a [10–4 ; 10–2] tartományban  
• γ – Kernel paramétert a [10–5 ; 10+5] tartományban 
• C – büntető paramétert a [10–5 ; 10+5] tartományban  
  



Conference on Problem-based Learning  University of Debrecen in Engineering Education 10.10.2013  Faculty of Engineering 
3.4. A regresszió végrehajtása az optimális hiperparaméterekkel 

Végül a grid search és a keresztvalidáció eredményeként kapott optimális hiperparaméterekkel meghatározzuk a Lagrange együtthatókat. Az így kapott képlet segítségével kiszámítjuk mind a 605 különböző alkatrész munkakülönbségét. Ezek közül a legkisebb különbség lesz az optimális geometriához tartozó munkakülönbség, ennek az alkatrésznek a rugókarakterisztikája fog a legkisebb mértékben eltérni az elvárt karakterisztikától.  A legoptimálisabb az lenne, ha a legkisebb különbség nulla lenne, de mivel nem konkrét geometria meghatározása a feladat, hanem egy készletből való választás, így az optimális eredmény a legkisebb eltérés lesz. (Természetesen a módszer alkalmas a pontos geometria meghatározására is.) 
4. Az eredmény 

A grid search és a keresztvalidáció eredményeként az optimális hiperparaméterek: ε  = 10–2 γ  = 10–1 C  = 102 Az optimális hiperparaméterekkel kiszámított Lagrange együtthatókkal meghatározott regressziós függvénnyel kiszámítva mind a 605 különböző alkatrész munkakülönbségét a legkisebb érték ΔWmin=0,2735J-ra adódott. Az ehhez az értékhez tartozó geometriai paraméterek: d = 16 mm ff = 2 mm fa = 3 mm 
Ellenőrzésképpen a kapott geometriai paraméterekkel, a végeselem módszer által meghatározott karakterisztikát és az előírt karakterisztikát egy grafikonon ábrázolva is láthatjuk ezt a minimális különbséget. Tehát az eredmény megfelelő, és az SVM módszer alkalmas ilyen optimalizációs feladatok elvégzésére. 

 6. ábra, Az előírt és az optimális karakterisztika 
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Számítógéppel támogatott „SZÍN-Játék”  

programelem  

Supported by computer „SZÍN-Játék” program 

element  

PERGE E. 
Debreceni Egyetem Műszaki Kar, perge@eng.unideb.hu  
Abstract. „SZÍN-Játék” programme element was realized in the framework of “TÁMOP-4.2.3-12/1/KONV-2012-0048 Acknowledgement and dissemination of scientific achievements by the researchers, teachers and students of the University of Debrecen” project. The aim of this programme element is to provide comprehensive knowledge about colour theories and their applications by using colour paints, colour light and our Colour Theory multimedia training tool that was developed at the Faculty of Engineering of the University of Debrecen. Our training tool is recommended for engineering and arts students of high schools and universities. 
Bevezetés 

A színelméleti ismeretek oktatása Magyarországon számos tantárgy (rajz, fizika, kémia, biológia, művészettörténet…) keretében valósul meg, de a tanulók nem kapnak átfogó képet a színelméleti ismeretekről.[1] A „TÁMOP-4.2.3-12/1/KONV-2012-0048 Tudományos eredmények elismerése és disszeminációja a Debreceni Egyetem kutatói, oktatói és hallgatói által” című pályázat keretében megvalósuló „SZÍN-Játék” című programelem bemutatja a színelméleti ismereteket és alkalmazásokat. Programunkat ajánljuk középiskolásoknak és egyetemistáknak a műszaki és a művészeti képzésében. 
1. A programelem célkitűzései  

A „SZÍN-Játék” című programelem célja átfogó ismeretet adni a színelméletről és azok alkalmazásáról a színes festékek, a színes fények és a multimédiás Színtani oktatóprogram alkalmazásával, melyet a Debreceni Egyetem Műszaki Karán fejlesztettünk ki.  
Feladatunk a tanulók vizuális megfigyelő, megismerő, befogadó, alkotó képességeinek fejlesztése, valamint a színmeghatározó és szín megkülönböztető képesség fejlesztése.  
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2. A programelem felépítése 

A programunk vendégei játékos formában ismerkednek meg a színekkel, a színlátás folyamatával, a színkeverés elméleti és gyakorlati kérdéseivel, a festékszínek és a fényszínek keverésével, a színharmóniával és alkalmazásával. 
A programelem végrehajtásának lépései a következők: Elméleti ismeretek áttekintése 
• A programvezető színekkel kapcsolatos kérdéseket vet fel, majd a diákokkal közösen megválaszolják azokat, ezáltal megközelítve a problémát. 
• Egy PowerPointos diasor segítségével a programvezető és a diákok közösen áttekintik a színekkel kapcsolatos ismereteket. 
• Összekapcsolják és rendszerezik a különböző tantárgyak keretén belül tanult ismeretanyagot (1. ábra) 

• fizika órán tanult fénytan, fénytörés, fényvisszaverés [4] 
• kémia órán tanult reakciók során keletkező színváltozások 
• biológia órán tanult szem és agy működéséhez kapcsolódó színinger, színészlelet[5] 
• rajz órán tanult  festékek keverésének elméletét.[2][3] 

 1. ábra. Diák a PowerPointos diasorból  
• A tanulók megismerik  

• op-art, azaz optikai művészet jeles képviselőit és azok alkotásait, amelyben az átlagos geometriai és matematikai törvények hatnak, s lehetővé teszik, hogy optikai hatásuk révén a térérzet, a mozgás és a vibrálás érzetét keltsék. 

 

•  az optikai illúziók fajtáit, a geometriai, a fény valamint a szín illúzióit. 
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Elméleti ismeretek a gyakorlatban  
• Festékszínek keverése    

• Nyomdaipar, nyomtató… 
• Egy centrifugából készített forgótárcsa segítségével a mozgás hatására keverednek 

a színek. 
• A kísérletben csak a 3 alapszínt használják és vizsgálják a létrejött kevert színeket.  

          

2. ábra. Festékszínek keverésének elmélete gyakorlata 
 

• Fényszínek keverése   
• TV, monitor, telefon 
• Színes fényű (zöld, kék és piros) lámpák alkalmazásával hoznak létre kevert színeket. pl.:sárgát 
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3. ábra. Fényszínek keverésének elmélete gyakorlata 
 
• A résztvevők megismerkednek egy saját fejlesztésű színtani oktatóprogrammal. 

 
4. ábra. Színtani oktatóprogram Az oktatóprogram a színelméleti ismeretek leírásán túl bemutatja a színkeverés elméleteit, a színredszerek közötti kapcsolatot és összefüggéseiket, valamint bemutatja a színharmóniák típusait és alkalmazási lehetőségeit interaktív módon.[2]    

 
5. ábra. Színkeverés különböző színrendszerekben RGB, CMY, HSB Az oktatóprogramban szimuláljuk az additív és a szubsztraktív színkeverést. A tanuló állíthatja a csúszkákon az egyes fényvetők „fényintenzitását”, megfigyelheti a keletkező keverékszíneket, 
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azok színkódjait. Itt lehetőségünk van a színek előállításának törvényszerűségeit bemutatni. Interaktív módon, szemléletessé tehetjük a színezet, telítettség, világosság paramétereket. 
 

     
3. ábra. Színharmóniák A program bemutatja a harmónia különböző típusait a monokróm, dikróm, trikóm, tetrakróm és polikróm színharmóniát. és ezek alkalmazását különböző területeken.[3] 

 

       
3. ábra. Színharmóniák alkalmazása  

3. Összefoglalás  

A „SZÍN-Játék” című programelem a „TÁMOP-4.2.3-12/1/KONV-2012-0048 Tudományos eredmények elismerése és disszeminációja a Debreceni Egyetem kutatói, oktatói és hallgatói által” című pályázat keretében valósult meg. 
A programelem a színelméleti ismeretek feldolgozását és alkotó alkalmazását segíti hagyományos eszközökkel, anyagokkal (festékkel, színes fényekkel) valamint interaktív számítógépes színtani oktatóprogram alkalmazásával. 
Az általános nevelési célokhoz többek között a kreativitás, a problémafelismerő és -megoldó képesség, a képzelet, a képi gondolkodás, az ízlés, a nyitottság, az érzelmi élet gazdagításával járulunk hozzá. 
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